--- license: other base_model: stabilityai/stable-diffusion-3.5-large tags: - sd3 - sd3-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora - standard inference: true widget: - text: unconditional (blank prompt) parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_0_0.png - text: >- k4s4, [speech-bubble-2] [people-2] [panel-1] [background-undefined] [camera-medium-shot] The scene depicts two characters in a heated exchange, with one character appearing visibly distressed or angry. They are engaged in a conversation, as indicated by the speech bubbles. The background is not clearly defined, suggesting an interior space, possibly a room with limited visibility of details. The shot captures both characters from a medium distance, emphasizing their expressions and the intensity of the moment. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_1_0.png --- # hwasan-yc-tag-1024-lora-500 This is a standard PEFT LoRA derived from [stabilityai/stable-diffusion-3.5-large](https://huggingface.co/stabilityai/stable-diffusion-3.5-large). The main validation prompt used during training was: ``` k4s4, [speech-bubble-2] [people-2] [panel-1] [background-undefined] [camera-medium-shot] The scene depicts two characters in a heated exchange, with one character appearing visibly distressed or angry. They are engaged in a conversation, as indicated by the speech bubbles. The background is not clearly defined, suggesting an interior space, possibly a room with limited visibility of details. The shot captures both characters from a medium distance, emphasizing their expressions and the intensity of the moment. ``` ## Validation settings - CFG: `7.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 9 - Training steps: 960 - Learning rate: 0.0001 - Learning rate schedule: cosine - Warmup steps: 2400 - Max grad norm: 2.0 - Effective batch size: 6 - Micro-batch size: 6 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['shift=3']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 0.0% - LoRA Rank: 500 - LoRA Alpha: 500.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### webtoon-storyboard - Repeats: 2 - Total number of images: 191 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'stabilityai/stable-diffusion-3.5-large' adapter_id = 'gunchoi/hwasan-yc-tag-1024-lora-500' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "k4s4, [speech-bubble-2] [people-2] [panel-1] [background-undefined] [camera-medium-shot] The scene depicts two characters in a heated exchange, with one character appearing visibly distressed or angry. They are engaged in a conversation, as indicated by the speech bubbles. The background is not clearly defined, suggesting an interior space, possibly a room with limited visibility of details. The shot captures both characters from a medium distance, emphasizing their expressions and the intensity of the moment." negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=7.5, ).images[0] image.save("output.png", format="PNG") ```