Upload Bilma
Browse files- config.json +1 -1
- modeling_bilma.py +26 -7
- tf_model.h5 +1 -1
config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
-
"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
"AutoConfig": "configuration_bilma.BilmaConfig",
|
|
|
1 |
{
|
2 |
"architectures": [
|
3 |
+
"lma"
|
4 |
],
|
5 |
"auto_map": {
|
6 |
"AutoConfig": "configuration_bilma.BilmaConfig",
|
modeling_bilma.py
CHANGED
@@ -9,7 +9,7 @@ from typing import Dict
|
|
9 |
import re
|
10 |
import unicodedata
|
11 |
|
12 |
-
from
|
13 |
|
14 |
# copied from preprocessing.py
|
15 |
BLANK = ' '
|
@@ -32,9 +32,10 @@ SYMBOLS = set(";:,.@\\-\"/" + SYMBOLS_)
|
|
32 |
|
33 |
class Bilma(TFPreTrainedModel):
|
34 |
config_class = BilmaConfig
|
35 |
-
main_input_name = "
|
36 |
|
37 |
def __init__(self, config):
|
|
|
38 |
super().__init__(config)
|
39 |
#if config.weights == "spanish":
|
40 |
# my_resources = importlib_resources.files("hf_bilma")
|
@@ -48,15 +49,33 @@ class Bilma(TFPreTrainedModel):
|
|
48 |
ff_dim=config.embedding_dim,
|
49 |
vocab_size=config.vocab_size,
|
50 |
rate=config.drop_rate)
|
51 |
-
|
52 |
-
|
|
|
53 |
@property
|
54 |
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return dummies
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
|
62 |
#
|
|
|
9 |
import re
|
10 |
import unicodedata
|
11 |
|
12 |
+
from configuration_bilma import BilmaConfig
|
13 |
|
14 |
# copied from preprocessing.py
|
15 |
BLANK = ' '
|
|
|
32 |
|
33 |
class Bilma(TFPreTrainedModel):
|
34 |
config_class = BilmaConfig
|
35 |
+
main_input_name = "capt_input"
|
36 |
|
37 |
def __init__(self, config):
|
38 |
+
self.seq_max_length = config.seq_max_length
|
39 |
super().__init__(config)
|
40 |
#if config.weights == "spanish":
|
41 |
# my_resources = importlib_resources.files("hf_bilma")
|
|
|
49 |
ff_dim=config.embedding_dim,
|
50 |
vocab_size=config.vocab_size,
|
51 |
rate=config.drop_rate)
|
52 |
+
|
53 |
+
#self.call(np.zeros((1, config.seq_max_length)))
|
54 |
+
|
55 |
@property
|
56 |
def dummy_inputs(self) -> Dict[str, tf.Tensor]:
|
57 |
+
|
58 |
+
dummies = {}
|
59 |
+
for key, spec in self.input_signature.items():
|
60 |
+
dummy_shape = [dim if dim is not None else 2 for dim in spec.shape]
|
61 |
+
if spec.shape[0] is None:
|
62 |
+
dummy_shape[0] = 1
|
63 |
+
dummies[key] = tf.ones(shape=dummy_shape, dtype=spec.dtype)
|
64 |
+
|
65 |
+
|
66 |
return dummies
|
67 |
|
68 |
+
@property
|
69 |
+
def input_signature(self) -> Dict[str, tf.TensorSpec]:
|
70 |
+
sig = {}
|
71 |
+
sig["capt_input"] = tf.TensorSpec([None, self.seq_max_length], tf.int32, name="capt_input")
|
72 |
+
return sig
|
73 |
+
|
74 |
+
|
75 |
+
def call(self, capt_input):
|
76 |
+
#if isinstance(tensor, dict) and len(tensor) == 0:
|
77 |
+
# return self.model(self.dummy_inputs)
|
78 |
+
return self.model(capt_input)
|
79 |
|
80 |
|
81 |
#
|
tf_model.h5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 156561684
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f932984cd1b53af396b362f3b882736143583d47f4c86f356e7ae359b6bcba7c
|
3 |
size 156561684
|