File size: 20,535 Bytes
90ca2ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.display import Audio\n",
    "from scipy.io.wavfile import write as write_wav\n",
    "\n",
    "from bark.api import generate_audio\n",
    "from bark.generation import SAMPLE_RATE, preload_models, codec_decode, generate_coarse, generate_fine, generate_text_semantic"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "semantic_path = \"semantic_output/pytorch_model.bin\" # set to None if you don't want to use finetuned semantic\n",
    "coarse_path = \"coarse_output/pytorch_model.bin\" # set to None if you don't want to use finetuned coarse\n",
    "fine_path = \"fine_output/pytorch_model.bin\" # set to None if you don't want to use finetuned fine\n",
    "use_rvc = True # Set to False to use bark without RVC\n",
    "rvc_name = 'mi-test'\n",
    "rvc_path = f\"Retrieval-based-Voice-Conversion-WebUI/weights/{rvc_name}.pth\"\n",
    "index_path = f\"Retrieval-based-Voice-Conversion-WebUI/logs/{rvc_name}/added_IVF256_Flat_nprobe_1_{rvc_name}_v2.index\"\n",
    "device=\"cuda:0\"\n",
    "is_half=True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "preload_models(\n",
    "    text_use_gpu=True,\n",
    "    text_use_small=False,\n",
    "    text_model_path=semantic_path,\n",
    "    coarse_use_gpu=True,\n",
    "    coarse_use_small=False,\n",
    "    coarse_model_path=coarse_path,\n",
    "    fine_use_gpu=True,\n",
    "    fine_use_small=False,\n",
    "    fine_model_path=fine_path,\n",
    "    codec_use_gpu=True,\n",
    "    force_reload=False,\n",
    "    path=\"models\"\n",
    ")\n",
    "\n",
    "if use_rvc:\n",
    "    from rvc_infer import get_vc, vc_single\n",
    "    get_vc(rvc_path, device, is_half)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# simple generation\n",
    "text_prompt = \"I am Joe Biden... and this is the finetuned semantic, coarse and fine model! A lot better than the original!\"\n",
    "filepath = \"output/audio.wav\" # change this to your desired output path\n",
    "audio_array = generate_audio(text_prompt, history_prompt=None, text_temp=0.7, waveform_temp=0.7)\n",
    "write_wav(filepath, SAMPLE_RATE, audio_array)\n",
    "\n",
    "if use_rvc:\n",
    "    index_rate = 0.75\n",
    "    f0up_key = -6\n",
    "    filter_radius = 3\n",
    "    rms_mix_rate = 0.25\n",
    "    protect = 0.33\n",
    "    resample_sr = SAMPLE_RATE\n",
    "    f0method = \"harvest\" #harvest or pm\n",
    "    try:\n",
    "        audio_array = vc_single(0,filepath,f0up_key,None,f0method,index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "    except:\n",
    "        audio_array = vc_single(0,filepath,f0up_key,None,'pm',index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "    write_wav(filepath, SAMPLE_RATE, audio_array)\n",
    "\n",
    "Audio(audio_array, rate=SAMPLE_RATE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def generate_with_settings(text_prompt, semantic_temp=0.7, semantic_top_k=50, semantic_top_p=0.95, coarse_temp=0.7, coarse_top_k=50, coarse_top_p=0.95, fine_temp=0.5, voice_name=None, use_semantic_history_prompt=True, use_coarse_history_prompt=True, use_fine_history_prompt=True, output_full=False):\n",
    "    # generation with more control\n",
    "    x_semantic = generate_text_semantic(\n",
    "        text_prompt,\n",
    "        history_prompt=voice_name if use_semantic_history_prompt else None,\n",
    "        temp=semantic_temp,\n",
    "        top_k=semantic_top_k,\n",
    "        top_p=semantic_top_p,\n",
    "    )\n",
    "\n",
    "    x_coarse_gen = generate_coarse(\n",
    "        x_semantic,\n",
    "        history_prompt=voice_name if use_coarse_history_prompt else None,\n",
    "        temp=coarse_temp,\n",
    "        top_k=coarse_top_k,\n",
    "        top_p=coarse_top_p,\n",
    "    )\n",
    "    x_fine_gen = generate_fine(\n",
    "        x_coarse_gen,\n",
    "        history_prompt=voice_name if use_fine_history_prompt else None,\n",
    "        temp=fine_temp,\n",
    "    )\n",
    "\n",
    "    if output_full:\n",
    "        full_generation = {\n",
    "            'semantic_prompt': x_semantic,\n",
    "            'coarse_prompt': x_coarse_gen,\n",
    "            'fine_prompt': x_fine_gen,\n",
    "        }\n",
    "        return full_generation, codec_decode(x_fine_gen)\n",
    "    return codec_decode(x_fine_gen)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_prompt = \"I am Joe Biden... and this is the finetuned semantic, coarse and fine model! A lot better than the original!\"\n",
    "filepath = \"output/audio.wav\" # change this to your desired output path\n",
    "\n",
    "audio_array = generate_with_settings(\n",
    "    text_prompt,\n",
    "    semantic_temp=0.7,\n",
    "    semantic_top_k=50,\n",
    "    semantic_top_p=0.99,\n",
    "    coarse_temp=0.7,\n",
    "    coarse_top_k=50,\n",
    "    coarse_top_p=0.95,\n",
    "    fine_temp=0.5,\n",
    "    voice_name=\"datasets/joe_biden_state_of_union/tokens/257.npz\",\n",
    "    use_semantic_history_prompt=False,\n",
    "    use_coarse_history_prompt=True,\n",
    "    use_fine_history_prompt=True,\n",
    "    output_full=False\n",
    ")\n",
    "\n",
    "write_wav(filepath, SAMPLE_RATE, audio_array)\n",
    "\n",
    "if use_rvc:\n",
    "    index_rate = 0.75\n",
    "    f0up_key = -6\n",
    "    filter_radius = 3\n",
    "    rms_mix_rate = 0.25\n",
    "    protect = 0.33\n",
    "    resample_sr = SAMPLE_RATE\n",
    "    f0method = \"harvest\" #harvest or pm\n",
    "    try:\n",
    "        audio_array = vc_single(0,filepath,f0up_key,None,f0method,index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "    except:\n",
    "        audio_array = vc_single(0,filepath,f0up_key,None,'pm',index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "    write_wav(filepath, SAMPLE_RATE, audio_array)\n",
    "\n",
    "Audio(audio_array, rate=SAMPLE_RATE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import re\n",
    "def split_and_recombine_text(text, desired_length=100, max_length=150):\n",
    "    # from https://github.com/neonbjb/tortoise-tts\n",
    "    \"\"\"Split text it into chunks of a desired length trying to keep sentences intact.\"\"\"\n",
    "    # normalize text, remove redundant whitespace and convert non-ascii quotes to ascii\n",
    "    text = re.sub(r\"\\n\\n+\", \"\\n\", text)\n",
    "    text = re.sub(r\"\\s+\", \" \", text)\n",
    "    text = re.sub(r\"[“”]\", '\"', text)\n",
    "\n",
    "    rv = []\n",
    "    in_quote = False\n",
    "    current = \"\"\n",
    "    split_pos = []\n",
    "    pos = -1\n",
    "    end_pos = len(text) - 1\n",
    "\n",
    "    def seek(delta):\n",
    "        nonlocal pos, in_quote, current\n",
    "        is_neg = delta < 0\n",
    "        for _ in range(abs(delta)):\n",
    "            if is_neg:\n",
    "                pos -= 1\n",
    "                current = current[:-1]\n",
    "            else:\n",
    "                pos += 1\n",
    "                current += text[pos]\n",
    "            if text[pos] == '\"':\n",
    "                in_quote = not in_quote\n",
    "        return text[pos]\n",
    "\n",
    "    def peek(delta):\n",
    "        p = pos + delta\n",
    "        return text[p] if p < end_pos and p >= 0 else \"\"\n",
    "\n",
    "    def commit():\n",
    "        nonlocal rv, current, split_pos\n",
    "        rv.append(current)\n",
    "        current = \"\"\n",
    "        split_pos = []\n",
    "\n",
    "    while pos < end_pos:\n",
    "        c = seek(1)\n",
    "        # do we need to force a split?\n",
    "        if len(current) >= max_length:\n",
    "            if len(split_pos) > 0 and len(current) > (desired_length / 2):\n",
    "                # we have at least one sentence and we are over half the desired length, seek back to the last split\n",
    "                d = pos - split_pos[-1]\n",
    "                seek(-d)\n",
    "            else:\n",
    "                # no full sentences, seek back until we are not in the middle of a word and split there\n",
    "                while c not in \"!?.\\n \" and pos > 0 and len(current) > desired_length:\n",
    "                    c = seek(-1)\n",
    "            commit()\n",
    "        # check for sentence boundaries\n",
    "        elif not in_quote and (c in \"!?\\n\" or (c == \".\" and peek(1) in \"\\n \")):\n",
    "            # seek forward if we have consecutive boundary markers but still within the max length\n",
    "            while (\n",
    "                pos < len(text) - 1 and len(current) < max_length and peek(1) in \"!?.\"\n",
    "            ):\n",
    "                c = seek(1)\n",
    "            split_pos.append(pos)\n",
    "            if len(current) >= desired_length:\n",
    "                commit()\n",
    "        # treat end of quote as a boundary if its followed by a space or newline\n",
    "        elif in_quote and peek(1) == '\"' and peek(2) in \"\\n \":\n",
    "            seek(2)\n",
    "            split_pos.append(pos)\n",
    "    rv.append(current)\n",
    "\n",
    "    # clean up, remove lines with only whitespace or punctuation\n",
    "    rv = [s.strip() for s in rv]\n",
    "    rv = [s for s in rv if len(s) > 0 and not re.match(r\"^[\\s\\.,;:!?]*$\", s)]\n",
    "\n",
    "    return rv\n",
    "\n",
    "def generate_with_settings(text_prompt, semantic_temp=0.7, semantic_top_k=50, semantic_top_p=0.95, coarse_temp=0.7, coarse_top_k=50, coarse_top_p=0.95, fine_temp=0.5, voice_name=None, use_semantic_history_prompt=True, use_coarse_history_prompt=True, use_fine_history_prompt=True, output_full=False):\n",
    "    # generation with more control\n",
    "    x_semantic = generate_text_semantic(\n",
    "        text_prompt,\n",
    "        history_prompt=voice_name if use_semantic_history_prompt else None,\n",
    "        temp=semantic_temp,\n",
    "        top_k=semantic_top_k,\n",
    "        top_p=semantic_top_p,\n",
    "    )\n",
    "\n",
    "    x_coarse_gen = generate_coarse(\n",
    "        x_semantic,\n",
    "        history_prompt=voice_name if use_coarse_history_prompt else None,\n",
    "        temp=coarse_temp,\n",
    "        top_k=coarse_top_k,\n",
    "        top_p=coarse_top_p,\n",
    "    )\n",
    "    x_fine_gen = generate_fine(\n",
    "        x_coarse_gen,\n",
    "        history_prompt=voice_name if use_fine_history_prompt else None,\n",
    "        temp=fine_temp,\n",
    "    )\n",
    "\n",
    "    if output_full:\n",
    "        full_generation = {\n",
    "            'semantic_prompt': x_semantic,\n",
    "            'coarse_prompt': x_coarse_gen,\n",
    "            'fine_prompt': x_fine_gen,\n",
    "        }\n",
    "        return full_generation, codec_decode(x_fine_gen)\n",
    "    return codec_decode(x_fine_gen)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"\"\"The Uncharted Land of Discovery: A Journey Through Time and Space\n",
    "[clears throat]\n",
    "Chapter 1: The Dawn of Curiosity\n",
    "[takes breath]\n",
    "Since the dawn of humankind, our species has been driven by a powerful force: curiosity. It is an innate, unquenchable desire to explore, understand, and unravel the mysteries of the world around us. This primal urge has led us on countless adventures, pushing us to the farthest reaches of our planet and beyond.\n",
    "\n",
    "Early humans, huddled around a flickering fire, gazed up at the night sky and wondered what those twinkling lights were. They had no idea that their curiosity would eventually propel us into the vast, uncharted realm of space. As time progressed, our ancestors began to explore their surroundings, venturing beyond their caves and settlements, driven by the need to discover what lay beyond the horizon.\n",
    "\n",
    "hapter 2: The Age of Exploration\n",
    "\n",
    "The Age of Exploration marked a turning point in human history, as brave souls took to the seas in search of new lands, wealth, and knowledge. Pioneers like Christopher Columbus, Vasco da Gama, and Ferdinand Magellan set sail on perilous voyages, pushing the boundaries of what was known and understood.\n",
    "[clears throat]\n",
    "These intrepid explorers discovered new continents, mapped out previously unknown territories, and encountered diverse cultures. They also established trade routes, allowing for the exchange of goods, ideas, and innovations between distant societies. The Age of Exploration was not without its dark moments, however, as conquest, colonization, and exploitation often went hand in hand with discovery.\n",
    "[clears throat]\n",
    "Chapter 3: The Scientific Revolution\n",
    "[laughs]\n",
    "The Scientific Revolution was a period of profound change, as humanity began to question long-held beliefs and seek empirical evidence. Pioneers like Galileo Galilei, Isaac Newton, and Johannes Kepler sought to understand the natural world through observation, experimentation, and reason.\n",
    "[sighs]\n",
    "Their discoveries laid the foundation for modern science, transforming the way we view the universe and our place within it. New technologies, such as the telescope and the microscope, allowed us to peer deeper into the cosmos and the microscopic world, further expanding our understanding of reality.\n",
    "[gasps]\n",
    "Chapter 4: The Information Age\n",
    "\n",
    "The Information Age, sometimes referred to as the Digital Age, has revolutionized the way we communicate, learn, and access knowledge. With the advent of the internet and personal computers, information that was once reserved for the privileged few is now available to the masses.\n",
    "...\n",
    "This democratization of knowledge has led to an explosion of innovation, as ideas and information are shared across borders and cultures at lightning speed. The Information Age has also brought new challenges, as the rapid pace of technological advancements threatens to outpace our ability to adapt and raises questions about the ethical implications of our increasingly interconnected world.\n",
    "[laughter]\n",
    "Chapter 5: The Final Frontier\n",
    "[clears throat]\n",
    "As our knowledge of the universe expands, so too does our desire to explore the cosmos. Space exploration has come a long way since the first successful satellite, Sputnik, was launched in 1957. We have landed humans on the moon, sent probes to the far reaches of our solar system, and even glimpsed distant galaxies through powerful telescopes.\n",
    "\n",
    "The future of space exploration is filled with possibilities, from establishing colonies on Mars to the search for extraterrestrial life. As we venture further into the unknown, we continue to be driven by the same curiosity that has propelled us throughout history, always seeking to uncover the secrets of the universe and our place within it.\n",
    "...\n",
    "In conclusion, the human journey is one of discovery, driven by our innate curiosity and desire to understand the world around us. From the dawn of our species to the present day, we have continued to explore, learn, and adapt, pushing the boundaries of what is known and possible. As we continue to unravel the mysteries of the cosmos, our spirit.\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Chunk the text into smaller pieces then combine the generated audio\n",
    "from time import time\n",
    "from tqdm.auto import tqdm\n",
    "from IPython.display import Audio\n",
    "from scipy.io.wavfile import write as write_wav\n",
    "import os\n",
    "import numpy as np\n",
    "\n",
    "# generation settings\n",
    "voice_name = \"datasets/joe_biden_state_of_union/tokens/257.npz\"\n",
    "out_filepath = 'audio/audio.wav'\n",
    "\n",
    "semantic_temp = 0.7\n",
    "semantic_top_k = 100\n",
    "semantic_top_p = 0.99\n",
    "\n",
    "coarse_temp = 0.7\n",
    "coarse_top_k = 100\n",
    "coarse_top_p = 0.95\n",
    "\n",
    "fine_temp = 0.7\n",
    "\n",
    "use_semantic_history_prompt = True\n",
    "use_coarse_history_prompt = True\n",
    "use_fine_history_prompt = True\n",
    "\n",
    "use_last_generation_as_history = False\n",
    "\n",
    "if use_rvc:\n",
    "    index_rate = 0.75\n",
    "    f0up_key = -6\n",
    "    filter_radius = 3\n",
    "    rms_mix_rate = 0.25\n",
    "    protect = 0.33\n",
    "    resample_sr = SAMPLE_RATE\n",
    "    f0method = \"harvest\" #harvest or pm\n",
    "\n",
    "texts = split_and_recombine_text(text)\n",
    "\n",
    "all_parts = []\n",
    "for i, text in tqdm(enumerate(texts), total=len(texts)):\n",
    "    full_generation, audio_array = generate_with_settings(\n",
    "        text,\n",
    "        semantic_temp=semantic_temp,\n",
    "        semantic_top_k=semantic_top_k,\n",
    "        semantic_top_p=semantic_top_p,\n",
    "        coarse_temp=coarse_temp,\n",
    "        coarse_top_k=coarse_top_k,\n",
    "        coarse_top_p=coarse_top_p,\n",
    "        fine_temp=fine_temp,\n",
    "        voice_name=voice_name,\n",
    "        use_semantic_history_prompt=use_semantic_history_prompt,\n",
    "        use_coarse_history_prompt=use_coarse_history_prompt,\n",
    "        use_fine_history_prompt=use_fine_history_prompt,\n",
    "        output_full=True\n",
    "    )\n",
    "    if use_last_generation_as_history:\n",
    "        # save to npz\n",
    "        os.makedirs('_temp', exist_ok=True)\n",
    "        np.savez_compressed(\n",
    "            '_temp/history.npz',\n",
    "            semantic_prompt=full_generation['semantic_prompt'],\n",
    "            coarse_prompt=full_generation['coarse_prompt'],\n",
    "            fine_prompt=full_generation['fine_prompt'],\n",
    "        )\n",
    "        voice_name = '_temp/history.npz'\n",
    "    write_wav(out_filepath.replace('.wav', f'_{i}') + '.wav', SAMPLE_RATE, audio_array)\n",
    "\n",
    "    if use_rvc:\n",
    "        try:\n",
    "            audio_array = vc_single(0,out_filepath.replace('.wav', f'_{i}') + '.wav',f0up_key,None,f0method,index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "        except:\n",
    "            audio_array = vc_single(0,out_filepath.replace('.wav', f'_{i}') + '.wav',f0up_key,None,'pm',index_path,index_rate, filter_radius=filter_radius, resample_sr=resample_sr, rms_mix_rate=rms_mix_rate, protect=protect)\n",
    "        write_wav(out_filepath.replace('.wav', f'_{i}') + '.wav', SAMPLE_RATE, audio_array)\n",
    "    all_parts.append(audio_array)\n",
    "\n",
    "audio_array = np.concatenate(all_parts, axis=-1)\n",
    "\n",
    "# save audio\n",
    "write_wav(out_filepath, SAMPLE_RATE, audio_array)\n",
    "\n",
    "# play audio\n",
    "Audio(audio_array, rate=SAMPLE_RATE)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}