File size: 6,830 Bytes
90ca2ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from bark.generation import load_codec_model, generate_text_semantic\n",
"from encodec.utils import convert_audio\n",
"\n",
"import torchaudio\n",
"import torch\n",
"\n",
"device = 'cuda' # or 'cpu'\n",
"model = load_codec_model(use_gpu=True if device == 'cuda' else False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer\n",
"from hubert.hubert_manager import HuBERTManager\n",
"hubert_manager = HuBERTManager()\n",
"hubert_manager.make_sure_hubert_installed()\n",
"hubert_manager.make_sure_tokenizer_installed()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer \n",
"# Load HuBERT for semantic tokens\n",
"from hubert.pre_kmeans_hubert import CustomHubert\n",
"from hubert.customtokenizer import CustomTokenizer\n",
"\n",
"# Load the HuBERT model\n",
"hubert_model = CustomHubert(checkpoint_path='data/models/hubert/hubert.pt').to(device)\n",
"\n",
"# Load the CustomTokenizer model\n",
"tokenizer = CustomTokenizer.load_from_checkpoint('data/models/hubert/tokenizer.pth').to(device) # Automatically uses the right layers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Load and pre-process the audio waveform\n",
"audio_filepath = 'audio.wav' # the audio you want to clone (under 13 seconds)\n",
"wav, sr = torchaudio.load(audio_filepath)\n",
"wav = convert_audio(wav, sr, model.sample_rate, model.channels)\n",
"wav = wav.to(device)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate)\n",
"semantic_tokens = tokenizer.get_token(semantic_vectors)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Extract discrete codes from EnCodec\n",
"with torch.no_grad():\n",
" encoded_frames = model.encode(wav.unsqueeze(0))\n",
"codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# move codes to cpu\n",
"codes = codes.cpu().numpy()\n",
"# move semantic tokens to cpu\n",
"semantic_tokens = semantic_tokens.cpu().numpy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"voice_name = 'output' # whatever you want the name of the voice to be\n",
"output_path = 'bark/assets/prompts/' + voice_name + '.npz'\n",
"np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# That's it! Now you can head over to the generate.ipynb and use your voice_name for the 'history_prompt'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Heres the generation stuff copy-pasted for convenience"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from bark.api import generate_audio\n",
"from transformers import BertTokenizer\n",
"from bark.generation import SAMPLE_RATE, preload_models, codec_decode, generate_coarse, generate_fine, generate_text_semantic\n",
"\n",
"# Enter your prompt and speaker here\n",
"text_prompt = \"Hello, my name is Serpy. And, uh — and I like pizza. [laughs]\"\n",
"voice_name = \"output\" # use your custom voice name here if you have one"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# download and load all models\n",
"preload_models(\n",
" text_use_gpu=True,\n",
" text_use_small=False,\n",
" coarse_use_gpu=True,\n",
" coarse_use_small=False,\n",
" fine_use_gpu=True,\n",
" fine_use_small=False,\n",
" codec_use_gpu=True,\n",
" force_reload=False,\n",
" path=\"models\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# simple generation\n",
"audio_array = generate_audio(text_prompt, history_prompt=voice_name, text_temp=0.7, waveform_temp=0.7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# generation with more control\n",
"x_semantic = generate_text_semantic(\n",
" text_prompt,\n",
" history_prompt=voice_name,\n",
" temp=0.7,\n",
" top_k=50,\n",
" top_p=0.95,\n",
")\n",
"\n",
"x_coarse_gen = generate_coarse(\n",
" x_semantic,\n",
" history_prompt=voice_name,\n",
" temp=0.7,\n",
" top_k=50,\n",
" top_p=0.95,\n",
")\n",
"x_fine_gen = generate_fine(\n",
" x_coarse_gen,\n",
" history_prompt=voice_name,\n",
" temp=0.5,\n",
")\n",
"audio_array = codec_decode(x_fine_gen)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Audio\n",
"# play audio\n",
"Audio(audio_array, rate=SAMPLE_RATE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from scipy.io.wavfile import write as write_wav\n",
"# save audio\n",
"filepath = \"/output/audio.wav\" # change this to your desired output path\n",
"write_wav(filepath, SAMPLE_RATE, audio_array)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|