--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: Intoxicated_Classification_Fine_Tuned_videomae-base results: [] --- # Intoxicated_Classification_Fine_Tuned_videomae-base This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5225 - Accuracy: 0.6974 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2792 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2663 | 0.25 | 698 | 0.9464 | 0.6060 | | 0.1985 | 1.25 | 1396 | 1.3857 | 0.6178 | | 0.1581 | 2.25 | 2094 | 1.8929 | 0.6540 | | 0.0711 | 3.25 | 2792 | 1.5225 | 0.6974 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0