update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: Davlan/afro-xlmr-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: flipped_5e-5_igbo
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# flipped_5e-5_igbo
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3125
|
24 |
+
- Precision: 0.3694
|
25 |
+
- Recall: 0.1838
|
26 |
+
- F1: 0.2455
|
27 |
+
- Accuracy: 0.8977
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.2975 | 1.0 | 1202 | 0.2816 | 0.2750 | 0.0578 | 0.0955 | 0.8990 |
|
59 |
+
| 0.2743 | 2.0 | 2404 | 0.2823 | 0.3149 | 0.0703 | 0.1149 | 0.9010 |
|
60 |
+
| 0.2415 | 3.0 | 3606 | 0.2842 | 0.3713 | 0.1375 | 0.2007 | 0.9007 |
|
61 |
+
| 0.2136 | 4.0 | 4808 | 0.3080 | 0.3688 | 0.1450 | 0.2082 | 0.8999 |
|
62 |
+
| 0.1904 | 5.0 | 6010 | 0.3125 | 0.3694 | 0.1838 | 0.2455 | 0.8977 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.31.0
|
68 |
+
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.14.0
|
70 |
+
- Tokenizers 0.13.3
|