--- library_name: transformers base_model: microsoft/codebert-base-mlm tags: - generated_from_trainer datasets: - devgpt-aimotion/the-stack-v2_PlantUML_filtered metrics: - accuracy model-index: - name: codebert_base_code_uml_c results: - task: name: Masked Language Modeling type: fill-mask dataset: name: devgpt-aimotion/the-stack-v2_PlantUML_filtered type: devgpt-aimotion/the-stack-v2_PlantUML_filtered metrics: - name: Accuracy type: accuracy value: 0.9053223443951083 --- # codebert_base_code_uml_c This model is a fine-tuned version of [microsoft/codebert-base-mlm](https://huggingface.co/microsoft/codebert-base-mlm) on the devgpt-aimotion/the-stack-v2_PlantUML_filtered dataset. It achieves the following results on the evaluation set: - Loss: 0.4533 - Accuracy: 0.9053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 96 - eval_batch_size: 96 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.5254 | 4.3592 | 10000 | 0.4521 | 0.9053 | ### Framework versions - Transformers 4.51.2 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1