# Visualization MMDetection3D provides a `Det3DLocalVisualizer` to visualize and store the state of the model during training and testing, as well as results, with the following features. 1. Support the basic drawing interface for multi-modality data and multi-task. 2. Support multiple backends such as local, TensorBoard, to write training status such as `loss`, `lr`, or performance evaluation metrics and to a specified single or multiple backends. 3. Support ground truth visualization on multimodal data, and cross-modal visualization of 3D detection results. ## Basic Drawing Interface Inherited from `DetLocalVisualizer`, `Det3DLocalVisualizer` provides an interface for drawing common objects on 2D images, such as drawing detection boxes, points, text, lines, circles, polygons, and binary masks. More details about 2D drawing can refer to the [visualization documentation](https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/visualization.html) in MMDetection. Here we introduce the 3D drawing interface: ### Drawing point cloud on the image We support drawing point cloud on the image by using `draw_points_on_image`. ```python import mmcv import numpy as np from mmengine import load from mmdet3d.visualization import Det3DLocalVisualizer info_file = load('demo/data/kitti/000008.pkl') points = np.fromfile('demo/data/kitti/000008.bin', dtype=np.float32) points = points.reshape(-1, 4)[:, :3] lidar2img = np.array(info_file['data_list'][0]['images']['CAM2']['lidar2img'], dtype=np.float32) visualizer = Det3DLocalVisualizer() img = mmcv.imread('demo/data/kitti/000008.png') img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.set_image(img) visualizer.draw_points_on_image(points, lidar2img) visualizer.show() ``` ![points_on_image](../../../resources/points_on_image.png) ### Drawing 3D Boxes on Point Cloud We support drawing 3D boxes on point cloud by using `draw_bboxes_3d`. ```python import torch import numpy as np from mmdet3d.visualization import Det3DLocalVisualizer from mmdet3d.structures import LiDARInstance3DBoxes points = np.fromfile('demo/data/kitti/000008.bin', dtype=np.float32) points = points.reshape(-1, 4) visualizer = Det3DLocalVisualizer() # set point cloud in visualizer visualizer.set_points(points) bboxes_3d = LiDARInstance3DBoxes( torch.tensor([[8.7314, -1.8559, -1.5997, 4.2000, 3.4800, 1.8900, -1.5808]])) # Draw 3D bboxes visualizer.draw_bboxes_3d(bboxes_3d) visualizer.show() ``` ![mono3d](../../../resources/pcd.png) ### Drawing Projected 3D Boxes on Image We support drawing projected 3D boxes on image by using `draw_proj_bboxes_3d`. ```python import mmcv import numpy as np from mmengine import load from mmdet3d.visualization import Det3DLocalVisualizer from mmdet3d.structures import CameraInstance3DBoxes info_file = load('demo/data/kitti/000008.pkl') cam2img = np.array(info_file['data_list'][0]['images']['CAM2']['cam2img'], dtype=np.float32) bboxes_3d = [] for instance in info_file['data_list'][0]['instances']: bboxes_3d.append(instance['bbox_3d']) gt_bboxes_3d = np.array(bboxes_3d, dtype=np.float32) gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d) input_meta = {'cam2img': cam2img} visualizer = Det3DLocalVisualizer() img = mmcv.imread('demo/data/kitti/000008.png') img = mmcv.imconvert(img, 'bgr', 'rgb') visualizer.set_image(img) # project 3D bboxes to image visualizer.draw_proj_bboxes_3d(gt_bboxes_3d, input_meta) visualizer.show() ``` ### Drawing BEV Boxes We support drawing BEV boxes by using `draw_bev_bboxes`. ```python import numpy as np from mmengine import load from mmdet3d.visualization import Det3DLocalVisualizer from mmdet3d.structures import CameraInstance3DBoxes info_file = load('demo/data/kitti/000008.pkl') bboxes_3d = [] for instance in info_file['data_list'][0]['instances']: bboxes_3d.append(instance['bbox_3d']) gt_bboxes_3d = np.array(bboxes_3d, dtype=np.float32) gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d) visualizer = Det3DLocalVisualizer() # set bev image in visualizer visualizer.set_bev_image() # draw bev bboxes visualizer.draw_bev_bboxes(gt_bboxes_3d, edge_colors='orange') visualizer.show() ``` ### Drawing 3D Semantic Mask We support draw segmentation mask via per-point colorization by using `draw_seg_mask`. ```python import numpy as np from mmdet3d.visualization import Det3DLocalVisualizer points = np.fromfile('demo/data/sunrgbd/000017.bin', dtype=np.float32) points = points.reshape(-1, 3) visualizer = Det3DLocalVisualizer() mask = np.random.rand(points.shape[0], 3) points_with_mask = np.concatenate((points, mask), axis=-1) # Draw 3D points with mask visualizer.set_points(points, pcd_mode=2, vis_mode='add') visualizer.draw_seg_mask(points_with_mask) visualizer.show() ``` ## Results To see the prediction results of trained models, you can run the following command: ```bash python tools/test.py ${CONFIG_FILE} ${CKPT_PATH} --show --show-dir ${SHOW_DIR} ``` After running this command, plotted results including input data and the output of networks visualized on the input will be saved in `${SHOW_DIR}`. After running this command, you will obtain the input data, the output of networks and ground-truth labels visualized on the input (e.g. `***_gt.png` and `***_pred.png` in multi-modality detection task and vision-based detection task) in `${SHOW_DIR}`. When `show` is enabled, [Open3D](http://www.open3d.org/) will be used to visualize the results online. If you are running test in remote server without GUI, the online visualization is not supported. You can download the `results.pkl` from the remote server, and visualize the prediction results offline in your local machine. To visualize the results with `Open3D` backend offline, you can run the following command: ```bash python tools/misc/visualize_results.py ${CONFIG_FILE} --result ${RESULTS_PATH} --show-dir ${SHOW_DIR} ``` ![](../../../resources/open3d_visual.gif) This allows the inference and results generation to be done in remote server and the users can open them on their host with GUI. ## Dataset We also provide scripts to visualize the dataset without inference. You can use `tools/misc/browse_dataset.py` to show loaded data and ground-truth online and save them on the disk. Currently we support single-modality 3D detection and 3D segmentation on all the datasets, multi-modality 3D detection on KITTI and SUN RGB-D, as well as monocular 3D detection on nuScenes. To browse the KITTI dataset, you can run the following command: ```shell python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task lidar_det --output-dir ${OUTPUT_DIR} ``` **Notice**: Once specifying `--output-dir`, the images of views specified by users will be saved when pressing `_ESC_` in open3d window. If you want to zoom out/in the point clouds to inspect more details, you could specify `--show-interval=0` in the command. To verify the data consistency and the effect of data augmentation, you can also add `--aug` flag to visualize the data after data augmentation using the command as below: ```shell python tools/misc/browse_dataset.py configs/_base_/datasets/kitti-3d-3class.py --task lidar_det --aug --output-dir ${OUTPUT_DIR} ``` If you also want to show 2D images with 3D bounding boxes projected onto them, you need to find a config that supports multi-modality data loading, and then change the `--task` args to `multi-modality_det`. An example is showed below: ```shell python tools/misc/browse_dataset.py configs/mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py --task multi-modality_det --output-dir ${OUTPUT_DIR} ``` ![](../../../resources/browse_dataset_multi_modality.png) You can simply browse different datasets using different configs, e.g. visualizing the ScanNet dataset in 3D semantic segmentation task: ```shell python tools/misc/browse_dataset.py configs/_base_/datasets/scannet-seg.py --task lidar_seg --output-dir ${OUTPUT_DIR} ``` ![](../../../resources/browse_dataset_seg.png) And browsing the nuScenes dataset in monocular 3D detection task: ```shell python tools/misc/browse_dataset.py configs/_base_/datasets/nus-mono3d.py --task mono_det --output-dir ${OUTPUT_DIR} ``` ![](../../../resources/browse_dataset_mono.png)