# Customize Models We basically categorize model components into 6 types: - encoder: Including voxel encoder and middle encoder used in voxel-based methods before backbone, e.g., `HardVFE` and `PointPillarsScatter`. - backbone: Usually an FCN network to extract feature maps, e.g., `ResNet`, `SECOND`. - neck: The component between backbones and heads, e.g., `FPN`, `SECONDFPN`. - head: The component for specific tasks, e.g., `bbox prediction` and `mask prediction`. - RoI extractor: The part for extracting RoI features from feature maps, e.g., `H3DRoIHead` and `PartAggregationROIHead`. - loss: The component in heads for calculating losses, e.g., `FocalLoss`, `L1Loss`, and `GHMLoss`. ## Develop new components ### Add a new encoder Here we show how to develop new components with an example of HardVFE. #### 1. Define a new voxel encoder (e.g. HardVFE: Voxel feature encoder used in HV-SECOND) Create a new file `mmdet3d/models/voxel_encoders/voxel_encoder.py`. ```python import torch.nn as nn from mmdet3d.registry import MODELS @MODELS.register_module() class HardVFE(nn.Module): def __init__(self, arg1, arg2): pass def forward(self, x): # should return a tuple pass ``` #### 2. Import the module You can either add the following line to `mmdet3d/models/voxel_encoders/__init__.py`: ```python from .voxel_encoder import HardVFE ``` or alternatively add ```python custom_imports = dict( imports=['mmdet3d.models.voxel_encoders.voxel_encoder'], allow_failed_imports=False) ``` to the config file to avoid modifying the original code. #### 3. Use the voxel encoder in your config file ```python model = dict( ... voxel_encoder=dict( type='HardVFE', arg1=xxx, arg2=yyy), ... ) ``` ### Add a new backbone Here we show how to develop new components with an example of [SECOND](https://www.mdpi.com/1424-8220/18/10/3337) (Sparsely Embedded Convolutional Detection). #### 1. Define a new backbone (e.g. SECOND) Create a new file `mmdet3d/models/backbones/second.py`. ```python from mmengine.model import BaseModule from mmdet3d.registry import MODELS @MODELS.register_module() class SECOND(BaseModule): def __init__(self, arg1, arg2): pass def forward(self, x): # should return a tuple pass ``` #### 2. Import the module You can either add the following line to `mmdet3d/models/backbones/__init__.py`: ```python from .second import SECOND ``` or alternatively add ```python custom_imports = dict( imports=['mmdet3d.models.backbones.second'], allow_failed_imports=False) ``` to the config file to avoid modifying the original code. #### 3. Use the backbone in your config file ```python model = dict( ... backbone=dict( type='SECOND', arg1=xxx, arg2=yyy), ... ) ``` ### Add a new neck #### 1. Define a new neck (e.g. SECONDFPN) Create a new file `mmdet3d/models/necks/second_fpn.py`. ```python from mmengine.model import BaseModule from mmdet3d.registry import MODELS @MODELS.register_module() class SECONDFPN(BaseModule): def __init__(self, in_channels=[128, 128, 256], out_channels=[256, 256, 256], upsample_strides=[1, 2, 4], norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01), upsample_cfg=dict(type='deconv', bias=False), conv_cfg=dict(type='Conv2d', bias=False), use_conv_for_no_stride=False, init_cfg=None): pass def forward(self, x): # implementation is ignored pass ``` #### 2. Import the module You can either add the following line to `mmdet3d/models/necks/__init__.py`: ```python from .second_fpn import SECONDFPN ``` or alternatively add ```python custom_imports = dict( imports=['mmdet3d.models.necks.second_fpn'], allow_failed_imports=False) ``` to the config file to avoid modifying the original code. #### 3. Use the neck in your config file ```python model = dict( ... neck=dict( type='SECONDFPN', in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]), ... ) ``` ### Add a new head Here we show how to develop a new head with the example of [PartA2 Head](https://arxiv.org/abs/1907.03670) as the following. **Note**: Here the example of `PartA2 RoI Head` is used in the second stage. For one-stage heads, please refer to examples in `mmdet3d/models/dense_heads/`. They are more commonly used in 3D detection for autonomous driving due to its simplicity and high efficiency. First, add a new bbox head in `mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py`. `PartA2 RoI Head` implements a new bbox head for object detection. To implement a bbox head, basically we need to implement two functions of the new module as the following. Sometimes other related functions like `loss` and `get_targets` are also required. ```python from mmengine.model import BaseModule from mmdet3d.registry import MODELS @MODELS.register_module() class PartA2BboxHead(BaseModule): """PartA2 RoI head.""" def __init__(self, num_classes, seg_in_channels, part_in_channels, seg_conv_channels=None, part_conv_channels=None, merge_conv_channels=None, down_conv_channels=None, shared_fc_channels=None, cls_channels=None, reg_channels=None, dropout_ratio=0.1, roi_feat_size=14, with_corner_loss=True, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), conv_cfg=dict(type='Conv1d'), norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01), loss_bbox=dict( type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), loss_cls=dict( type='CrossEntropyLoss', use_sigmoid=True, reduction='none', loss_weight=1.0), init_cfg=None): super(PartA2BboxHead, self).__init__(init_cfg=init_cfg) def forward(self, seg_feats, part_feats): pass ``` Second, implement a new RoI Head if it is necessary. We plan to inherit the new `PartAggregationROIHead` from `Base3DRoIHead`. We can find that a `Base3DRoIHead` already implements the following functions. ```python from mmdet.models.roi_heads import BaseRoIHead from mmdet3d.registry import MODELS, TASK_UTILS class Base3DRoIHead(BaseRoIHead): """Base class for 3d RoIHeads.""" def __init__(self, bbox_head=None, bbox_roi_extractor=None, mask_head=None, mask_roi_extractor=None, train_cfg=None, test_cfg=None, init_cfg=None): super(Base3DRoIHead, self).__init__( bbox_head=bbox_head, bbox_roi_extractor=bbox_roi_extractor, mask_head=mask_head, mask_roi_extractor=mask_roi_extractor, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg) def init_bbox_head(self, bbox_roi_extractor: dict, bbox_head: dict) -> None: """Initialize box head and box roi extractor. Args: bbox_roi_extractor (dict or ConfigDict): Config of box roi extractor. bbox_head (dict or ConfigDict): Config of box in box head. """ self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor) self.bbox_head = MODELS.build(bbox_head) def init_assigner_sampler(self): """Initialize assigner and sampler.""" self.bbox_assigner = None self.bbox_sampler = None if self.train_cfg: if isinstance(self.train_cfg.assigner, dict): self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner) elif isinstance(self.train_cfg.assigner, list): self.bbox_assigner = [ TASK_UTILS.build(res) for res in self.train_cfg.assigner ] self.bbox_sampler = TASK_UTILS.build(self.train_cfg.sampler) def init_mask_head(self): """Initialize mask head, skip since ``PartAggregationROIHead`` does not have one.""" pass ``` Double Head's modification is mainly in the bbox_forward logic, and it inherits other logics from the `Base3DRoIHead`. In the `mmdet3d/models/roi_heads/part_aggregation_roi_head.py`, we implement the new RoI Head as the following: ```python from typing import Dict, List, Tuple from mmdet.models.task_modules import AssignResult, SamplingResult from mmengine import ConfigDict from torch import Tensor from torch.nn import functional as F from mmdet3d.registry import MODELS from mmdet3d.structures import bbox3d2roi from mmdet3d.utils import InstanceList from ...structures.det3d_data_sample import SampleList from .base_3droi_head import Base3DRoIHead @MODELS.register_module() class PartAggregationROIHead(Base3DRoIHead): """Part aggregation roi head for PartA2. Args: semantic_head (ConfigDict): Config of semantic head. num_classes (int): The number of classes. seg_roi_extractor (ConfigDict): Config of seg_roi_extractor. bbox_roi_extractor (ConfigDict): Config of part_roi_extractor. bbox_head (ConfigDict): Config of bbox_head. train_cfg (ConfigDict): Training config. test_cfg (ConfigDict): Testing config. """ def __init__(self, semantic_head: dict, num_classes: int = 3, seg_roi_extractor: dict = None, bbox_head: dict = None, bbox_roi_extractor: dict = None, train_cfg: dict = None, test_cfg: dict = None, init_cfg: dict = None) -> None: super(PartAggregationROIHead, self).__init__( bbox_head=bbox_head, bbox_roi_extractor=bbox_roi_extractor, train_cfg=train_cfg, test_cfg=test_cfg, init_cfg=init_cfg) self.num_classes = num_classes assert semantic_head is not None self.init_seg_head(seg_roi_extractor, semantic_head) def init_seg_head(self, seg_roi_extractor: dict, semantic_head: dict) -> None: """Initialize semantic head and seg roi extractor. Args: seg_roi_extractor (dict): Config of seg roi extractor. semantic_head (dict): Config of semantic head. """ self.semantic_head = MODELS.build(semantic_head) self.seg_roi_extractor = MODELS.build(seg_roi_extractor) @property def with_semantic(self): """bool: whether the head has semantic branch""" return hasattr(self, 'semantic_head') and self.semantic_head is not None def predict(self, feats_dict: Dict, rpn_results_list: InstanceList, batch_data_samples: SampleList, rescale: bool = False, **kwargs) -> InstanceList: """Perform forward propagation of the roi head and predict detection results on the features of the upstream network. Args: feats_dict (dict): Contains features from the first stage. rpn_results_list (List[:obj:`InstanceData`]): Detection results of rpn head. batch_data_samples (List[:obj:`Det3DDataSample`]): The Data samples. It usually includes information such as `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`. rescale (bool): If True, return boxes in original image space. Defaults to False. Returns: list[:obj:`InstanceData`]: Detection results of each sample after the post process. Each item usually contains following keys. - scores_3d (Tensor): Classification scores, has a shape (num_instances, ) - labels_3d (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes, contains a tensor with shape (num_instances, C), where C >= 7. """ assert self.with_bbox, 'Bbox head must be implemented in PartA2.' assert self.with_semantic, 'Semantic head must be implemented' \ ' in PartA2.' batch_input_metas = [ data_samples.metainfo for data_samples in batch_data_samples ] voxels_dict = feats_dict.pop('voxels_dict') # TODO: Split predict semantic and bbox results_list = self.predict_bbox(feats_dict, voxels_dict, batch_input_metas, rpn_results_list, self.test_cfg) return results_list def predict_bbox(self, feats_dict: Dict, voxel_dict: Dict, batch_input_metas: List[dict], rpn_results_list: InstanceList, test_cfg: ConfigDict) -> InstanceList: """Perform forward propagation of the bbox head and predict detection results on the features of the upstream network. Args: feats_dict (dict): Contains features from the first stage. voxel_dict (dict): Contains information of voxels. batch_input_metas (list[dict], Optional): Batch image meta info. Defaults to None. rpn_results_list (List[:obj:`InstanceData`]): Detection results of rpn head. test_cfg (Config): Test config. Returns: list[:obj:`InstanceData`]: Detection results of each sample after the post process. Each item usually contains following keys. - scores_3d (Tensor): Classification scores, has a shape (num_instances, ) - labels_3d (Tensor): Labels of bboxes, has a shape (num_instances, ). - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes, contains a tensor with shape (num_instances, C), where C >= 7. """ ... def loss(self, feats_dict: Dict, rpn_results_list: InstanceList, batch_data_samples: SampleList, **kwargs) -> dict: """Perform forward propagation and loss calculation of the detection roi on the features of the upstream network. Args: feats_dict (dict): Contains features from the first stage. rpn_results_list (List[:obj:`InstanceData`]): Detection results of rpn head. batch_data_samples (List[:obj:`Det3DDataSample`]): The Data samples. It usually includes information such as `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`. Returns: dict[str, Tensor]: A dictionary of loss components """ assert len(rpn_results_list) == len(batch_data_samples) losses = dict() batch_gt_instances_3d = [] batch_gt_instances_ignore = [] voxels_dict = feats_dict.pop('voxels_dict') for data_sample in batch_data_samples: batch_gt_instances_3d.append(data_sample.gt_instances_3d) if 'ignored_instances' in data_sample: batch_gt_instances_ignore.append(data_sample.ignored_instances) else: batch_gt_instances_ignore.append(None) if self.with_semantic: semantic_results = self._semantic_forward_train( feats_dict, voxels_dict, batch_gt_instances_3d) losses.update(semantic_results.pop('loss_semantic')) sample_results = self._assign_and_sample(rpn_results_list, batch_gt_instances_3d) if self.with_bbox: feats_dict.update(semantic_results) bbox_results = self._bbox_forward_train(feats_dict, voxels_dict, sample_results) losses.update(bbox_results['loss_bbox']) return losses ``` Here we omit more details related to other functions. Please see the [code](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/models/roi_heads/part_aggregation_roi_head.py) for more details. Last, the users need to add the module in `mmdet3d/models/roi_heads/bbox_heads/__init__.py` and `mmdet3d/models/roi_heads/__init__.py` thus the corresponding registry could find and load them. Alternatively, the users can add ```python custom_imports=dict( imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_heads.bbox_heads.parta2_bbox_head'], allow_failed_imports=False) ``` to the config file and achieve the same goal. The config file of `PartAggregationROIHead` is as the following: ```python model = dict( ... roi_head=dict( type='PartAggregationROIHead', num_classes=3, semantic_head=dict( type='PointwiseSemanticHead', in_channels=16, extra_width=0.2, seg_score_thr=0.3, num_classes=3, loss_seg=dict( type='mmdet.FocalLoss', use_sigmoid=True, reduction='sum', gamma=2.0, alpha=0.25, loss_weight=1.0), loss_part=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)), seg_roi_extractor=dict( type='Single3DRoIAwareExtractor', roi_layer=dict( type='RoIAwarePool3d', out_size=14, max_pts_per_voxel=128, mode='max')), bbox_roi_extractor=dict( type='Single3DRoIAwareExtractor', roi_layer=dict( type='RoIAwarePool3d', out_size=14, max_pts_per_voxel=128, mode='avg')), bbox_head=dict( type='PartA2BboxHead', num_classes=3, seg_in_channels=16, part_in_channels=4, seg_conv_channels=[64, 64], part_conv_channels=[64, 64], merge_conv_channels=[128, 128], down_conv_channels=[128, 256], bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), shared_fc_channels=[256, 512, 512, 512], cls_channels=[256, 256], reg_channels=[256, 256], dropout_ratio=0.1, roi_feat_size=14, with_corner_loss=True, loss_bbox=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, reduction='sum', loss_weight=1.0), loss_cls=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=True, reduction='sum', loss_weight=1.0))), ... ) ``` Since MMDetection 2.0, the config system supports to inherit configs such that the users can focus on the modification. The second stage of PartA2 Head mainly uses a new `PartAggregationROIHead` and a new `PartA2BboxHead`, the arguments are set according to the `__init__` function of each module. ### Add a new loss Assume you want to add a new loss as `MyLoss` for bounding box regression. To add a new loss function, the users need to implement it in `mmdet3d/models/losses/my_loss.py`. The decorator `weighted_loss` enables the loss to be weighted for each element. ```python import torch import torch.nn as nn from mmdet.models.losses.utils import weighted_loss from mmdet3d.registry import MODELS @weighted_loss def my_loss(pred, target): assert pred.size() == target.size() and target.numel() > 0 loss = torch.abs(pred - target) return loss @MODELS.register_module() class MyLoss(nn.Module): def __init__(self, reduction='mean', loss_weight=1.0): super(MyLoss, self).__init__() self.reduction = reduction self.loss_weight = loss_weight def forward(self, pred, target, weight=None, avg_factor=None, reduction_override=None): assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) loss_bbox = self.loss_weight * my_loss( pred, target, weight, reduction=reduction, avg_factor=avg_factor) return loss_bbox ``` Then the users need to add it in the `mmdet3d/models/losses/__init__.py`. ```python from .my_loss import MyLoss, my_loss ``` Alternatively, you can add ```python custom_imports=dict( imports=['mmdet3d.models.losses.my_loss'], allow_failed_imports=False) ``` to the config file and achieve the same goal. To use it, users should modify the `loss_xxx` field. Since `MyLoss` is for regression, you need to modify the `loss_bbox` field in the head. ```python loss_bbox=dict(type='MyLoss', loss_weight=1.0) ```