File size: 9,109 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright (c) OpenMMLab. All rights reserved.
from concurrent import futures as futures
from os import path as osp
import mmcv
import mmengine
import numpy as np
from scipy import io as sio
def random_sampling(points, num_points, replace=None, return_choices=False):
"""Random sampling.
Sampling point cloud to a certain number of points.
Args:
points (ndarray): Point cloud.
num_points (int): The number of samples.
replace (bool): Whether the sample is with or without replacement.
return_choices (bool): Whether to return choices.
Returns:
points (ndarray): Point cloud after sampling.
"""
if replace is None:
replace = (points.shape[0] < num_points)
choices = np.random.choice(points.shape[0], num_points, replace=replace)
if return_choices:
return points[choices], choices
else:
return points[choices]
class SUNRGBDInstance(object):
def __init__(self, line):
data = line.split(' ')
data[1:] = [float(x) for x in data[1:]]
self.classname = data[0]
self.xmin = data[1]
self.ymin = data[2]
self.xmax = data[1] + data[3]
self.ymax = data[2] + data[4]
self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
self.centroid = np.array([data[5], data[6], data[7]])
self.width = data[8]
self.length = data[9]
self.height = data[10]
# data[9] is x_size (length), data[8] is y_size (width), data[10] is
# z_size (height) in our depth coordinate system,
# l corresponds to the size along the x axis
self.size = np.array([data[9], data[8], data[10]]) * 2
self.orientation = np.zeros((3, ))
self.orientation[0] = data[11]
self.orientation[1] = data[12]
self.heading_angle = np.arctan2(self.orientation[1],
self.orientation[0])
self.box3d = np.concatenate(
[self.centroid, self.size, self.heading_angle[None]])
class SUNRGBDData(object):
"""SUNRGBD data.
Generate scannet infos for sunrgbd_converter.
Args:
root_path (str): Root path of the raw data.
split (str, optional): Set split type of the data. Default: 'train'.
use_v1 (bool, optional): Whether to use v1. Default: False.
"""
def __init__(self, root_path, split='train', use_v1=False):
self.root_dir = root_path
self.split = split
self.split_dir = osp.join(root_path, 'sunrgbd_trainval')
self.classes = [
'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
'night_stand', 'bookshelf', 'bathtub'
]
self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
self.label2cat = {
label: self.classes[label]
for label in range(len(self.classes))
}
assert split in ['train', 'val', 'test']
split_file = osp.join(self.split_dir, f'{split}_data_idx.txt')
mmengine.check_file_exist(split_file)
self.sample_id_list = map(int, mmengine.list_from_file(split_file))
self.image_dir = osp.join(self.split_dir, 'image')
self.calib_dir = osp.join(self.split_dir, 'calib')
self.depth_dir = osp.join(self.split_dir, 'depth')
if use_v1:
self.label_dir = osp.join(self.split_dir, 'label_v1')
else:
self.label_dir = osp.join(self.split_dir, 'label')
def __len__(self):
return len(self.sample_id_list)
def get_image(self, idx):
img_filename = osp.join(self.image_dir, f'{idx:06d}.jpg')
return mmcv.imread(img_filename)
def get_image_shape(self, idx):
image = self.get_image(idx)
return np.array(image.shape[:2], dtype=np.int32)
def get_depth(self, idx):
depth_filename = osp.join(self.depth_dir, f'{idx:06d}.mat')
depth = sio.loadmat(depth_filename)['instance']
return depth
def get_calibration(self, idx):
calib_filepath = osp.join(self.calib_dir, f'{idx:06d}.txt')
lines = [line.rstrip() for line in open(calib_filepath)]
Rt = np.array([float(x) for x in lines[0].split(' ')])
Rt = np.reshape(Rt, (3, 3), order='F').astype(np.float32)
K = np.array([float(x) for x in lines[1].split(' ')])
K = np.reshape(K, (3, 3), order='F').astype(np.float32)
return K, Rt
def get_label_objects(self, idx):
label_filename = osp.join(self.label_dir, f'{idx:06d}.txt')
lines = [line.rstrip() for line in open(label_filename)]
objects = [SUNRGBDInstance(line) for line in lines]
return objects
def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
"""Get data infos.
This method gets information from the raw data.
Args:
num_workers (int, optional): Number of threads to be used.
Default: 4.
has_label (bool, optional): Whether the data has label.
Default: True.
sample_id_list (list[int], optional): Index list of the sample.
Default: None.
Returns:
infos (list[dict]): Information of the raw data.
"""
def process_single_scene(sample_idx):
print(f'{self.split} sample_idx: {sample_idx}')
# convert depth to points
SAMPLE_NUM = 50000
# TODO: Check whether can move the point
# sampling process during training.
pc_upright_depth = self.get_depth(sample_idx)
pc_upright_depth_subsampled = random_sampling(
pc_upright_depth, SAMPLE_NUM)
info = dict()
pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
info['point_cloud'] = pc_info
mmengine.mkdir_or_exist(osp.join(self.root_dir, 'points'))
pc_upright_depth_subsampled.tofile(
osp.join(self.root_dir, 'points', f'{sample_idx:06d}.bin'))
info['pts_path'] = osp.join('points', f'{sample_idx:06d}.bin')
img_path = osp.join('image', f'{sample_idx:06d}.jpg')
image_info = {
'image_idx': sample_idx,
'image_shape': self.get_image_shape(sample_idx),
'image_path': img_path
}
info['image'] = image_info
K, Rt = self.get_calibration(sample_idx)
calib_info = {'K': K, 'Rt': Rt}
info['calib'] = calib_info
if has_label:
obj_list = self.get_label_objects(sample_idx)
annotations = {}
annotations['gt_num'] = len([
obj.classname for obj in obj_list
if obj.classname in self.cat2label.keys()
])
if annotations['gt_num'] != 0:
annotations['name'] = np.array([
obj.classname for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['bbox'] = np.concatenate([
obj.box2d.reshape(1, 4) for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0)
annotations['location'] = np.concatenate([
obj.centroid.reshape(1, 3) for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0)
annotations['dimensions'] = 2 * np.array([
[obj.length, obj.width, obj.height] for obj in obj_list
if obj.classname in self.cat2label.keys()
]) # lwh (depth) format
annotations['rotation_y'] = np.array([
obj.heading_angle for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['index'] = np.arange(
len(obj_list), dtype=np.int32)
annotations['class'] = np.array([
self.cat2label[obj.classname] for obj in obj_list
if obj.classname in self.cat2label.keys()
])
annotations['gt_boxes_upright_depth'] = np.stack(
[
obj.box3d for obj in obj_list
if obj.classname in self.cat2label.keys()
],
axis=0) # (K,8)
info['annos'] = annotations
return info
sample_id_list = sample_id_list if \
sample_id_list is not None else self.sample_id_list
with futures.ThreadPoolExecutor(num_workers) as executor:
infos = executor.map(process_single_scene, sample_id_list)
return list(infos)
|