File size: 9,109 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright (c) OpenMMLab. All rights reserved.
from concurrent import futures as futures
from os import path as osp

import mmcv
import mmengine
import numpy as np
from scipy import io as sio


def random_sampling(points, num_points, replace=None, return_choices=False):
    """Random sampling.

    Sampling point cloud to a certain number of points.

    Args:
        points (ndarray): Point cloud.
        num_points (int): The number of samples.
        replace (bool): Whether the sample is with or without replacement.
        return_choices (bool): Whether to return choices.

    Returns:
        points (ndarray): Point cloud after sampling.
    """

    if replace is None:
        replace = (points.shape[0] < num_points)
    choices = np.random.choice(points.shape[0], num_points, replace=replace)
    if return_choices:
        return points[choices], choices
    else:
        return points[choices]


class SUNRGBDInstance(object):

    def __init__(self, line):
        data = line.split(' ')
        data[1:] = [float(x) for x in data[1:]]
        self.classname = data[0]
        self.xmin = data[1]
        self.ymin = data[2]
        self.xmax = data[1] + data[3]
        self.ymax = data[2] + data[4]
        self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
        self.centroid = np.array([data[5], data[6], data[7]])
        self.width = data[8]
        self.length = data[9]
        self.height = data[10]
        # data[9] is x_size (length), data[8] is y_size (width), data[10] is
        # z_size (height) in our depth coordinate system,
        # l corresponds to the size along the x axis
        self.size = np.array([data[9], data[8], data[10]]) * 2
        self.orientation = np.zeros((3, ))
        self.orientation[0] = data[11]
        self.orientation[1] = data[12]
        self.heading_angle = np.arctan2(self.orientation[1],
                                        self.orientation[0])
        self.box3d = np.concatenate(
            [self.centroid, self.size, self.heading_angle[None]])


class SUNRGBDData(object):
    """SUNRGBD data.

    Generate scannet infos for sunrgbd_converter.

    Args:
        root_path (str): Root path of the raw data.
        split (str, optional): Set split type of the data. Default: 'train'.
        use_v1 (bool, optional): Whether to use v1. Default: False.
    """

    def __init__(self, root_path, split='train', use_v1=False):
        self.root_dir = root_path
        self.split = split
        self.split_dir = osp.join(root_path, 'sunrgbd_trainval')
        self.classes = [
            'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
            'night_stand', 'bookshelf', 'bathtub'
        ]
        self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
        self.label2cat = {
            label: self.classes[label]
            for label in range(len(self.classes))
        }
        assert split in ['train', 'val', 'test']
        split_file = osp.join(self.split_dir, f'{split}_data_idx.txt')
        mmengine.check_file_exist(split_file)
        self.sample_id_list = map(int, mmengine.list_from_file(split_file))
        self.image_dir = osp.join(self.split_dir, 'image')
        self.calib_dir = osp.join(self.split_dir, 'calib')
        self.depth_dir = osp.join(self.split_dir, 'depth')
        if use_v1:
            self.label_dir = osp.join(self.split_dir, 'label_v1')
        else:
            self.label_dir = osp.join(self.split_dir, 'label')

    def __len__(self):
        return len(self.sample_id_list)

    def get_image(self, idx):
        img_filename = osp.join(self.image_dir, f'{idx:06d}.jpg')
        return mmcv.imread(img_filename)

    def get_image_shape(self, idx):
        image = self.get_image(idx)
        return np.array(image.shape[:2], dtype=np.int32)

    def get_depth(self, idx):
        depth_filename = osp.join(self.depth_dir, f'{idx:06d}.mat')
        depth = sio.loadmat(depth_filename)['instance']
        return depth

    def get_calibration(self, idx):
        calib_filepath = osp.join(self.calib_dir, f'{idx:06d}.txt')
        lines = [line.rstrip() for line in open(calib_filepath)]
        Rt = np.array([float(x) for x in lines[0].split(' ')])
        Rt = np.reshape(Rt, (3, 3), order='F').astype(np.float32)
        K = np.array([float(x) for x in lines[1].split(' ')])
        K = np.reshape(K, (3, 3), order='F').astype(np.float32)
        return K, Rt

    def get_label_objects(self, idx):
        label_filename = osp.join(self.label_dir, f'{idx:06d}.txt')
        lines = [line.rstrip() for line in open(label_filename)]
        objects = [SUNRGBDInstance(line) for line in lines]
        return objects

    def get_infos(self, num_workers=4, has_label=True, sample_id_list=None):
        """Get data infos.

        This method gets information from the raw data.

        Args:
            num_workers (int, optional): Number of threads to be used.
                Default: 4.
            has_label (bool, optional): Whether the data has label.
                Default: True.
            sample_id_list (list[int], optional): Index list of the sample.
                Default: None.

        Returns:
            infos (list[dict]): Information of the raw data.
        """

        def process_single_scene(sample_idx):
            print(f'{self.split} sample_idx: {sample_idx}')
            # convert depth to points
            SAMPLE_NUM = 50000
            # TODO: Check whether can move the point
            #  sampling process during training.
            pc_upright_depth = self.get_depth(sample_idx)
            pc_upright_depth_subsampled = random_sampling(
                pc_upright_depth, SAMPLE_NUM)

            info = dict()
            pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
            info['point_cloud'] = pc_info

            mmengine.mkdir_or_exist(osp.join(self.root_dir, 'points'))
            pc_upright_depth_subsampled.tofile(
                osp.join(self.root_dir, 'points', f'{sample_idx:06d}.bin'))

            info['pts_path'] = osp.join('points', f'{sample_idx:06d}.bin')
            img_path = osp.join('image', f'{sample_idx:06d}.jpg')
            image_info = {
                'image_idx': sample_idx,
                'image_shape': self.get_image_shape(sample_idx),
                'image_path': img_path
            }
            info['image'] = image_info

            K, Rt = self.get_calibration(sample_idx)
            calib_info = {'K': K, 'Rt': Rt}
            info['calib'] = calib_info

            if has_label:
                obj_list = self.get_label_objects(sample_idx)
                annotations = {}
                annotations['gt_num'] = len([
                    obj.classname for obj in obj_list
                    if obj.classname in self.cat2label.keys()
                ])
                if annotations['gt_num'] != 0:
                    annotations['name'] = np.array([
                        obj.classname for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ])
                    annotations['bbox'] = np.concatenate([
                        obj.box2d.reshape(1, 4) for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ],
                                                         axis=0)
                    annotations['location'] = np.concatenate([
                        obj.centroid.reshape(1, 3) for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ],
                                                             axis=0)
                    annotations['dimensions'] = 2 * np.array([
                        [obj.length, obj.width, obj.height] for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ])  # lwh (depth) format
                    annotations['rotation_y'] = np.array([
                        obj.heading_angle for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ])
                    annotations['index'] = np.arange(
                        len(obj_list), dtype=np.int32)
                    annotations['class'] = np.array([
                        self.cat2label[obj.classname] for obj in obj_list
                        if obj.classname in self.cat2label.keys()
                    ])
                    annotations['gt_boxes_upright_depth'] = np.stack(
                        [
                            obj.box3d for obj in obj_list
                            if obj.classname in self.cat2label.keys()
                        ],
                        axis=0)  # (K,8)
                info['annos'] = annotations
            return info

        sample_id_list = sample_id_list if \
            sample_id_list is not None else self.sample_id_list
        with futures.ThreadPoolExecutor(num_workers) as executor:
            infos = executor.map(process_single_scene, sample_id_list)
        return list(infos)