File size: 21,565 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
# 自定义模型

我们通常把模型的各个组成成分分成 6 种类型:

- 编码器(encoder):包括 voxel encoder 和 middle encoder 等进入 backbone 前所使用的基于体素的方法,如 `HardVFE``PointPillarsScatter`- 骨干网络(backbone):通常采用 FCN 网络来提取特征图,如 `ResNet``SECOND`- 颈部网络(neck):位于 backbones 和 heads 之间的组成模块,如 `FPN``SECONDFPN`- 检测头(head):用于特定任务的组成模块,如`检测框的预测``掩码的预测`- RoI 提取器(RoI extractor):用于从特征图中提取 RoI 特征的组成模块,如 `H3DRoIHead``PartAggregationROIHead`- 损失函数(loss):heads 中用于计算损失函数的组成模块,如 `FocalLoss``L1Loss``GHMLoss`## 开发新的组成模块

### 添加新的编码器

接下来我们以 HardVFE 为例展示如何开发新的组成模块。

#### 1. 定义一个新的体素编码器(如 HardVFE:即 HV-SECOND 中使用的体素特征编码器)

创建一个新文件 `mmdet3d/models/voxel_encoders/voxel_encoder.py````python
import torch.nn as nn

from mmdet3d.registry import MODELS


@MODELS.register_module()
class HardVFE(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # 需要返回一个元组
        pass
```

#### 2. 导入该模块

您可以在 `mmdet3d/models/voxel_encoders/__init__.py` 中添加以下代码:

```python
from .voxel_encoder import HardVFE
```

或者在配置文件中添加以下代码,从而避免修改源码:

```python
custom_imports = dict(
    imports=['mmdet3d.models.voxel_encoders.voxel_encoder'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用体素编码器

```python
model = dict(
    ...
    voxel_encoder=dict(
        type='HardVFE',
        arg1=xxx,
        arg2=yyy),
    ...
)
```

### 添加新的骨干网络

接下来我们以 [SECOND](https://www.mdpi.com/1424-8220/18/10/3337)(Sparsely Embedded Convolutional Detection)为例展示如何开发新的组成模块。

#### 1. 定义一个新的骨干网络(如 SECOND)

创建一个新文件 `mmdet3d/models/backbones/second.py````python
from mmengine.model import BaseModule

from mmdet3d.registry import MODELS


@MODELS.register_module()
class SECOND(BaseModule):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # 需要返回一个元组
        pass
```

#### 2. 导入该模块

您可以在 `mmdet3d/models/backbones/__init__.py` 中添加以下代码:

```python
from .second import SECOND
```

或者在配置文件中添加以下代码,从而避免修改源码:

```python
custom_imports = dict(
    imports=['mmdet3d.models.backbones.second'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用骨干网络

```python
model = dict(
    ...
    backbone=dict(
        type='SECOND',
        arg1=xxx,
        arg2=yyy),
    ...
)
```

### 添加新的颈部网络

#### 1. 定义一个新的颈部网络(如 SECONDFPN)

创建一个新文件 `mmdet3d/models/necks/second_fpn.py````python
from mmengine.model import BaseModule

from mmdet3d.registry import MODELS


@MODELS.register_module()
class SECONDFPN(BaseModule):

    def __init__(self,
                 in_channels=[128, 128, 256],
                 out_channels=[256, 256, 256],
                 upsample_strides=[1, 2, 4],
                 norm_cfg=dict(type='BN', eps=1e-3, momentum=0.01),
                 upsample_cfg=dict(type='deconv', bias=False),
                 conv_cfg=dict(type='Conv2d', bias=False),
                 use_conv_for_no_stride=False,
                 init_cfg=None):
        pass

    def forward(self, x):
        # 具体实现忽略
        pass
```

#### 2. 导入该模块

您可以在 `mmdet3d/models/necks/__init__.py` 中添加以下代码:

```python
from .second_fpn import SECONDFPN
```

或者在配置文件中添加以下代码,从而避免修改源码:

```python
custom_imports = dict(
    imports=['mmdet3d.models.necks.second_fpn'],
    allow_failed_imports=False)
```

#### 3. 在配置文件中使用颈部网络

```python
model = dict(
    ...
    neck=dict(
        type='SECONDFPN',
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    ...
)
```

### 添加新的检测头

接下来我们以 [PartA2 Head](https://arxiv.org/abs/1907.03670) 为例展示如何开发新的检测头。

**注意**:此处展示的 `PartA2 RoI Head` 将用于检测器的第二阶段。对于单阶段的检测头,请参考 `mmdet3d/models/dense_heads/` 中的例子。由于其简单高效,它们更常用于自动驾驶场景下的 3D 检测中。

首先,在 `mmdet3d/models/roi_heads/bbox_heads/parta2_bbox_head.py` 中添加新的 bbox head。`PartA2 RoI Head` 为目标检测实现了一个新的 bbox head。为了实现一个 bbox head,我们通常需要在新模块中实现如下两个函数。有时还需要实现其他相关函数,如 `loss``get_targets````python
from mmengine.model import BaseModule

from mmdet3d.registry import MODELS


@MODELS.register_module()
class PartA2BboxHead(BaseModule):
    """PartA2 RoI head."""

    def __init__(self,
                 num_classes,
                 seg_in_channels,
                 part_in_channels,
                 seg_conv_channels=None,
                 part_conv_channels=None,
                 merge_conv_channels=None,
                 down_conv_channels=None,
                 shared_fc_channels=None,
                 cls_channels=None,
                 reg_channels=None,
                 dropout_ratio=0.1,
                 roi_feat_size=14,
                 with_corner_loss=True,
                 bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
                 conv_cfg=dict(type='Conv1d'),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='none',
                     loss_weight=1.0),
                 init_cfg=None):
        super(PartA2BboxHead, self).__init__(init_cfg=init_cfg)

    def forward(self, seg_feats, part_feats):
        pass
```

其次,如果有必要的话需要实现一个新的 RoI Head。我们从 `Base3DRoIHead` 中继承得到新的 `PartAggregationROIHead`。我们可以发现 `Base3DRoIHead` 已经实现了如下函数。

```python
from mmdet.models.roi_heads import BaseRoIHead

from mmdet3d.registry import MODELS, TASK_UTILS


class Base3DRoIHead(BaseRoIHead):
    """Base class for 3d RoIHeads."""

    def __init__(self,
                 bbox_head=None,
                 bbox_roi_extractor=None,
                 mask_head=None,
                 mask_roi_extractor=None,
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):
        super(Base3DRoIHead, self).__init__(
            bbox_head=bbox_head,
            bbox_roi_extractor=bbox_roi_extractor,
            mask_head=mask_head,
            mask_roi_extractor=mask_roi_extractor,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)

    def init_bbox_head(self, bbox_roi_extractor: dict,
                       bbox_head: dict) -> None:
        """Initialize box head and box roi extractor.

        Args:
            bbox_roi_extractor (dict or ConfigDict): Config of box
                roi extractor.
            bbox_head (dict or ConfigDict): Config of box in box head.
        """
        self.bbox_roi_extractor = MODELS.build(bbox_roi_extractor)
        self.bbox_head = MODELS.build(bbox_head)

    def init_assigner_sampler(self):
        """Initialize assigner and sampler."""
        self.bbox_assigner = None
        self.bbox_sampler = None
        if self.train_cfg:
            if isinstance(self.train_cfg.assigner, dict):
                self.bbox_assigner = TASK_UTILS.build(self.train_cfg.assigner)
            elif isinstance(self.train_cfg.assigner, list):
                self.bbox_assigner = [
                    TASK_UTILS.build(res) for res in self.train_cfg.assigner
                ]
            self.bbox_sampler = TASK_UTILS.build(self.train_cfg.sampler)

    def init_mask_head(self):
        """Initialize mask head, skip since ``PartAggregationROIHead`` does not
        have one."""
        pass
```

接下来主要对 bbox_forward 的逻辑进行修改,同时其继承了来自 `Base3DRoIHead` 的其它逻辑。在 `mmdet3d/models/roi_heads/part_aggregation_roi_head.py` 中,我们实现了新的 RoI Head,如下所示:

```python
from typing import Dict, List, Tuple

from mmdet.models.task_modules import AssignResult, SamplingResult
from mmengine import ConfigDict
from torch import Tensor
from torch.nn import functional as F

from mmdet3d.registry import MODELS
from mmdet3d.structures import bbox3d2roi
from mmdet3d.utils import InstanceList
from ...structures.det3d_data_sample import SampleList
from .base_3droi_head import Base3DRoIHead


@MODELS.register_module()
class PartAggregationROIHead(Base3DRoIHead):
    """Part aggregation roi head for PartA2.

    Args:
        semantic_head (ConfigDict): Config of semantic head.
        num_classes (int): The number of classes.
        seg_roi_extractor (ConfigDict): Config of seg_roi_extractor.
        bbox_roi_extractor (ConfigDict): Config of part_roi_extractor.
        bbox_head (ConfigDict): Config of bbox_head.
        train_cfg (ConfigDict): Training config.
        test_cfg (ConfigDict): Testing config.
    """

    def __init__(self,
                 semantic_head: dict,
                 num_classes: int = 3,
                 seg_roi_extractor: dict = None,
                 bbox_head: dict = None,
                 bbox_roi_extractor: dict = None,
                 train_cfg: dict = None,
                 test_cfg: dict = None,
                 init_cfg: dict = None) -> None:
        super(PartAggregationROIHead, self).__init__(
            bbox_head=bbox_head,
            bbox_roi_extractor=bbox_roi_extractor,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)
        self.num_classes = num_classes
        assert semantic_head is not None
        self.init_seg_head(seg_roi_extractor, semantic_head)

    def init_seg_head(self, seg_roi_extractor: dict,
                      semantic_head: dict) -> None:
        """Initialize semantic head and seg roi extractor.

        Args:
            seg_roi_extractor (dict): Config of seg
                roi extractor.
            semantic_head (dict): Config of semantic head.
        """
        self.semantic_head = MODELS.build(semantic_head)
        self.seg_roi_extractor = MODELS.build(seg_roi_extractor)

    @property
    def with_semantic(self):
        """bool: whether the head has semantic branch"""
        return hasattr(self,
                       'semantic_head') and self.semantic_head is not None

    def predict(self,
                feats_dict: Dict,
                rpn_results_list: InstanceList,
                batch_data_samples: SampleList,
                rescale: bool = False,
                **kwargs) -> InstanceList:
        """Perform forward propagation of the roi head and predict detection
        results on the features of the upstream network.

        Args:
            feats_dict (dict): Contains features from the first stage.
            rpn_results_list (List[:obj:`InstanceData`]): Detection results
                of rpn head.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                samples. It usually includes information such as
                `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each sample
            after the post process.
            Each item usually contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
              contains a tensor with shape (num_instances, C), where
              C >= 7.
        """
        assert self.with_bbox, 'Bbox head must be implemented in PartA2.'
        assert self.with_semantic, 'Semantic head must be implemented' \
                                   ' in PartA2.'

        batch_input_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        voxels_dict = feats_dict.pop('voxels_dict')
        # TODO: Split predict semantic and bbox
        results_list = self.predict_bbox(feats_dict, voxels_dict,
                                         batch_input_metas, rpn_results_list,
                                         self.test_cfg)
        return results_list

    def predict_bbox(self, feats_dict: Dict, voxel_dict: Dict,
                     batch_input_metas: List[dict],
                     rpn_results_list: InstanceList,
                     test_cfg: ConfigDict) -> InstanceList:
        """Perform forward propagation of the bbox head and predict detection
        results on the features of the upstream network.

        Args:
            feats_dict (dict): Contains features from the first stage.
            voxel_dict (dict): Contains information of voxels.
            batch_input_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            rpn_results_list (List[:obj:`InstanceData`]): Detection results
                of rpn head.
            test_cfg (Config): Test config.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each sample
            after the post process.
            Each item usually contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
              contains a tensor with shape (num_instances, C), where
              C >= 7.
        """
        ...

    def loss(self, feats_dict: Dict, rpn_results_list: InstanceList,
             batch_data_samples: SampleList, **kwargs) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            feats_dict (dict): Contains features from the first stage.
            rpn_results_list (List[:obj:`InstanceData`]): Detection results
                of rpn head.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                samples. It usually includes information such as
                `gt_instance_3d`, `gt_panoptic_seg_3d` and `gt_sem_seg_3d`.

        Returns:
            dict[str, Tensor]: A dictionary of loss components
        """
        assert len(rpn_results_list) == len(batch_data_samples)
        losses = dict()
        batch_gt_instances_3d = []
        batch_gt_instances_ignore = []
        voxels_dict = feats_dict.pop('voxels_dict')
        for data_sample in batch_data_samples:
            batch_gt_instances_3d.append(data_sample.gt_instances_3d)
            if 'ignored_instances' in data_sample:
                batch_gt_instances_ignore.append(data_sample.ignored_instances)
            else:
                batch_gt_instances_ignore.append(None)
        if self.with_semantic:
            semantic_results = self._semantic_forward_train(
                feats_dict, voxels_dict, batch_gt_instances_3d)
            losses.update(semantic_results.pop('loss_semantic'))

        sample_results = self._assign_and_sample(rpn_results_list,
                                                 batch_gt_instances_3d)
        if self.with_bbox:
            feats_dict.update(semantic_results)
            bbox_results = self._bbox_forward_train(feats_dict, voxels_dict,
                                                    sample_results)
            losses.update(bbox_results['loss_bbox'])

        return losses
```

此处我们省略了相关函数的更多细节。更多细节请参考[代码](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/models/roi_heads/part_aggregation_roi_head.py)。

最后,用户需要在 `mmdet3d/models/roi_heads/bbox_heads/__init__.py``mmdet3d/models/roi_heads/__init__.py` 添加模块,从而能被相应的注册器找到并加载。

此外,用户也可以在配置文件中添加以下代码以达到相同的目的。

```python
custom_imports=dict(
    imports=['mmdet3d.models.roi_heads.part_aggregation_roi_head', 'mmdet3d.models.roi_heads.bbox_heads.parta2_bbox_head'],
    allow_failed_imports=False)
```

`PartAggregationROIHead` 的配置文件如下所示:

```python
model = dict(
    ...
    roi_head=dict(
        type='PartAggregationROIHead',
        num_classes=3,
        semantic_head=dict(
            type='PointwiseSemanticHead',
            in_channels=16,
            extra_width=0.2,
            seg_score_thr=0.3,
            num_classes=3,
            loss_seg=dict(
                type='mmdet.FocalLoss',
                use_sigmoid=True,
                reduction='sum',
                gamma=2.0,
                alpha=0.25,
                loss_weight=1.0),
            loss_part=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=True,
                loss_weight=1.0)),
        seg_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='max')),
        bbox_roi_extractor=dict(
            type='Single3DRoIAwareExtractor',
            roi_layer=dict(
                type='RoIAwarePool3d',
                out_size=14,
                max_pts_per_voxel=128,
                mode='avg')),
        bbox_head=dict(
            type='PartA2BboxHead',
            num_classes=3,
            seg_in_channels=16,
            part_in_channels=4,
            seg_conv_channels=[64, 64],
            part_conv_channels=[64, 64],
            merge_conv_channels=[128, 128],
            down_conv_channels=[128, 256],
            bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
            shared_fc_channels=[256, 512, 512, 512],
            cls_channels=[256, 256],
            reg_channels=[256, 256],
            dropout_ratio=0.1,
            roi_feat_size=14,
            with_corner_loss=True,
            loss_bbox=dict(
                type='mmdet.SmoothL1Loss',
                beta=1.0 / 9.0,
                reduction='sum',
                loss_weight=1.0),
            loss_cls=dict(
                type='mmdet.CrossEntropyLoss',
                use_sigmoid=True,
                reduction='sum',
                loss_weight=1.0))),
    ...
)
```

MMDetection 2.0 开始支持配置文件之间的继承,因此用户可以关注配置文件的修改。PartA2 Head 的第二阶段主要使用了新的 `PartAggregationROIHead``PartA2BboxHead`,需要根据对应模块的 `__init__` 函数来设置参数。

### 添加新的损失函数

假设您想要为检测框的回归添加一个新的损失函数 `MyLoss`。为了添加一个新的损失函数,用户需要在 `mmdet3d/models/losses/my_loss.py` 中实现该函数。装饰器 `weighted_loss` 能够保证对每个元素的损失进行加权平均。

```python
import torch
import torch.nn as nn
from mmdet.models.losses.utils import weighted_loss

from mmdet3d.registry import MODELS


@weighted_loss
def my_loss(pred, target):
    assert pred.size() == target.size() and target.numel() > 0
    loss = torch.abs(pred - target)
    return loss


@MODELS.register_module()
class MyLoss(nn.Module):

    def __init__(self, reduction='mean', loss_weight=1.0):
        super(MyLoss, self).__init__()
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None):
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * my_loss(
            pred, target, weight, reduction=reduction, avg_factor=avg_factor)
        return loss_bbox
```

接下来,用户需要在 `mmdet3d/models/losses/__init__.py` 添加该函数。

```python
from .my_loss import MyLoss, my_loss
```

或者在配置文件中添加以下代码以达到相同的目的。

```python
custom_imports=dict(
    imports=['mmdet3d.models.losses.my_loss'],
    allow_failed_imports=False)
```

为了使用该函数,用户需要修改 `loss_xxx` 域。由于 `MyLoss` 是用于回归的,您需要修改 head 中的 `loss_bbox` 域。

```python
loss_bbox=dict(type='MyLoss', loss_weight=1.0)
```