File size: 24,226 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# Learn about Configs

MMDetection3D and other OpenMMLab repositories use [MMEngine's config system](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html). It has a modular and inheritance design, which is convenient to conduct various experiments.

## Config file content

MMDetection3D uses a modular design, all modules with different functions can be configured through the config. Taking PointPillars as an example, we will introduce each field in the config according to different function modules.

### Model config

In MMDetection3D's config, we use `model` to setup detection algorithm components. In addition to neural network components such as `voxel_encoder`, `backbone` etc, it also requires `data_preprocessor`, `train_cfg`, and `test_cfg`. `data_preprocessor` is responsible for processing a batch of data output by dataloader. `train_cfg` and `test_cfg` in the model config are training and testing hyperparameters of the components.

```python
model = dict(
    type='VoxelNet',
    data_preprocessor=dict(
        type='Det3DDataPreprocessor',
        voxel=True,
        voxel_layer=dict(
            max_num_points=32,
            point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1],
            voxel_size=[0.16, 0.16, 4],
            max_voxels=(16000, 40000))),
    voxel_encoder=dict(
        type='PillarFeatureNet',
        in_channels=4,
        feat_channels=[64],
        with_distance=False,
        voxel_size=[0.16, 0.16, 4],
        point_cloud_range=[0, -39.68, -3, 69.12, 39.68, 1]),
    middle_encoder=dict(
        type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]),
    backbone=dict(
        type='SECOND',
        in_channels=64,
        layer_nums=[3, 5, 5],
        layer_strides=[2, 2, 2],
        out_channels=[64, 128, 256]),
    neck=dict(
        type='SECONDFPN',
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    bbox_head=dict(
        type='Anchor3DHead',
        num_classes=3,
        in_channels=384,
        feat_channels=384,
        use_direction_classifier=True,
        assign_per_class=True,
        anchor_generator=dict(
            type='AlignedAnchor3DRangeGenerator',
            ranges=[[0, -39.68, -0.6, 69.12, 39.68, -0.6],
                    [0, -39.68, -0.6, 69.12, 39.68, -0.6],
                    [0, -39.68, -1.78, 69.12, 39.68, -1.78]],
            sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
            rotations=[0, 1.57],
            reshape_out=False),
        diff_rad_by_sin=True,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
        loss_cls=dict(
            type='mmdet.FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(
            type='mmdet.SmoothL1Loss',
            beta=0.1111111111111111,
            loss_weight=2.0),
        loss_dir=dict(
            type='mmdet.CrossEntropyLoss', use_sigmoid=False,
            loss_weight=0.2)),
    train_cfg=dict(
        assigner=[
            dict(
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.5,
                neg_iou_thr=0.35,
                min_pos_iou=0.35,
                ignore_iof_thr=-1),
            dict(
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.5,
                neg_iou_thr=0.35,
                min_pos_iou=0.35,
                ignore_iof_thr=-1),
            dict(
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.6,
                neg_iou_thr=0.45,
                min_pos_iou=0.45,
                ignore_iof_thr=-1)
        ],
        allowed_border=0,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        use_rotate_nms=True,
        nms_across_levels=False,
        nms_thr=0.01,
        score_thr=0.1,
        min_bbox_size=0,
        nms_pre=100,
        max_num=50))
```

### Dataset and evaluator config

[Dataloaders](https://pytorch.org/docs/stable/data.html?highlight=data%20loader#torch.utils.data.DataLoader) are required for the training, validation, and testing of the [runner](https://mmengine.readthedocs.io/en/latest/tutorials/runner.html). Dataset and data pipeline need to be set to build the dataloader. Due to the complexity of this part, we use intermediate variables to simplify the writing of dataloader configs.

```python
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
class_names = ['Pedestrian', 'Cyclist', 'Car']
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
    classes=class_names,
    sample_groups=dict(Car=15, Pedestrian=15, Cyclist=15),
    points_loader=dict(
        type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))

train_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(type='ObjectSample', db_sampler=db_sampler, use_ground_plane=True),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])
]
test_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
]
eval_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
    batch_size=6,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='kitti_infos_train.pkl',
            data_prefix=dict(pts='training/velodyne_reduced'),
            pipeline=train_pipeline,
            modality=input_modality,
            test_mode=False,
            metainfo=metainfo,
            box_type_3d='LiDAR')))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(pts='training/velodyne_reduced'),
        ann_file='kitti_infos_val.pkl',
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        box_type_3d='LiDAR'))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(pts='training/velodyne_reduced'),
        ann_file='kitti_infos_val.pkl',
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        box_type_3d='LiDAR'))
```

[Evaluators](https://mmengine.readthedocs.io/en/latest/tutorials/evaluation.html) are used to compute the metrics of the trained model on the validation and testing datasets. The config of evaluators consists of one or a list of metric configs:

```python
val_evaluator = dict(
    type='KittiMetric',
    ann_file=data_root + 'kitti_infos_val.pkl',
    metric='bbox')
test_evaluator = val_evaluator
```

Since the test dataset has no annotation files, the test_dataloader and test_evaluator config in MMDetection3D are generally equal to the val's. If you want to save the detection results on the test dataset, you can write the config like this:

```python
# inference on test dataset and
# format the output results for submission.
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(pts='testing/velodyne_reduced'),
        ann_file='kitti_infos_test.pkl',
        load_eval_anns=False,
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        box_type_3d='LiDAR'))
test_evaluator = dict(
    type='KittiMetric',
    ann_file=data_root + 'kitti_infos_test.pkl',
    metric='bbox',
    format_only=True,
    submission_prefix='results/kitti-3class/kitti_results')
```

### Training and testing config

MMEngine's runner uses Loop to control the training, validation, and testing processes.
Users can set the maximum training epochs and validation intervals with these fields:

```python
train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=80,
    val_interval=2)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
```

### Optimization config

`optim_wrapper` is the field to configure optimization-related settings. The optimizer wrapper not only provides the functions of the optimizer, but also supports functions such as gradient clipping, mixed precision training, etc. Find more in [optimizer wrapper tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html).

```python
optim_wrapper = dict(  # Optimizer wrapper config
    type='OptimWrapper',  # Optimizer wrapper type, switch to AmpOptimWrapper to enable mixed precision training.
    optimizer=dict(  # Optimizer config. Support all kinds of optimizers in PyTorch. Refer to https://pytorch.org/docs/stable/optim.html#algorithms
        type='AdamW', lr=0.001, betas=(0.95, 0.99), weight_decay=0.01),
    clip_grad=dict(max_norm=35, norm_type=2))  # Gradient clip option. Set None to disable gradient clip. Find usage in https://mmengine.readthedocs.io/en/latest/tutorials/optim_wrapper.html
```

`param_scheduler` is a field that configures methods of adjusting optimization hyperparameters such as learning rate and momentum. Users can combine multiple schedulers to create a desired parameter adjustment strategy. Find more in [parameter scheduler tutorial](https://mmengine.readthedocs.io/en/latest/tutorials/param_scheduler.html) and [parameter scheduler API documents](https://mmengine.readthedocs.io/en/latest/api/optim.html#scheduler).

```python
param_scheduler = [
    dict(
        type='CosineAnnealingLR',
        T_max=32,
        eta_min=0.01,
        begin=0,
        end=32,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingLR',
        T_max=48,
        eta_min=1.0000000000000001e-07,
        begin=32,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingMomentum',
        T_max=32,
        eta_min=0.8947368421052632,
        begin=0,
        end=32,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingMomentum',
        T_max=48,
        eta_min=1,
        begin=32,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True),
]
```

### Hook config

Users can attach Hooks to training, validation, and testing loops to insert some operations during running. There are two different hook fields, one is `default_hooks` and the other is `custom_hooks`.

`default_hooks` is a dict of hook configs, and they are the hooks must be required at the runtime. They have default priority which should not be modified. If not set, runner will use the default values. To disable a default hook, users can set its config to `None`.

```python
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=-1),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='Det3DVisualizationHook'))
```

`custom_hooks` is a list of all other hook configs. Users can develop their own hooks and insert them in this field.

```python
custom_hooks = []
```

### Runtime config

```python
default_scope = 'mmdet3d'  # The default registry scope to find modules. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/registry.html

env_cfg = dict(
    cudnn_benchmark=False,  # Whether to enable cudnn benchmark
    mp_cfg=dict(  # Multi-processing config
        mp_start_method='fork',  # Use fork to start multi-processing threads. 'fork' usually faster than 'spawn' but maybe unsafe. See discussion in https://github.com/pytorch/pytorch/issues/1355
        opencv_num_threads=0),  # Disable opencv multi-threads to avoid system being overloaded
    dist_cfg=dict(backend='nccl'))  # Distribution configs

vis_backends = [dict(type='LocalVisBackend')]  # Visualization backends. Refer to https://mmengine.readthedocs.io/en/latest/advanced_tutorials/visualization.html
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')

log_processor = dict(
    type='LogProcessor',  # Log processor to process runtime logs
    window_size=50,  # Smooth interval of log values
    by_epoch=True)  # Whether to format logs with epoch type. Should be consistent with the train loop's type.

log_level = 'INFO'  # The level of logging.
load_from = None  # Load model checkpoint as a pre-trained model from a given path. This will not resume training.
resume = False  # Whether to resume from the checkpoint defined in `load_from`. If `load_from` is None, it will resume the latest checkpoint in the `work_dir`.
```

## Config file inheritance

There are 4 basic component types under `configs/_base_`, dataset, model, schedule, default_runtime.
Many methods could be easily constructed with one of these models like SECOND, PointPillars, PartA2, VoteNet.
The configs that are composed of components from `_base_` are called _primitive_.

For all configs under the same folder, it is recommended to have only **one** _primitive_ config. All other configs should inherit from the _primitive_ config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.
For example, if some modification is made based on PointPillars, users may first inherit the basic PointPillars structure by specifying `_base_ = '../pointpillars/pointpillars_hv_fpn_sbn-all_8xb4-2x_nus-3d.py'`, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder `xxx_rcnn` under `configs`.

Please refer to [MMEngine config tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html) for detailed documentation.

By setting the `_base_` field, we can set which files the current configuration file inherits from.

When `_base_` is a string of a file path, it means inheriting the contents from one config file.

```python
_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'
```

When `_base_` is a list of multiple file paths, it means inheriting from multiple files.

```python
_base_ = [
    '../_base_/models/pointpillars_hv_secfpn_kitti.py',
    '../_base_/datasets/kitti-3d-3class.py',
    '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
]
```

If you wish to inspect the config file, you may run `python tools/misc/print_config.py /PATH/TO/CONFIG` to see the complete config.

### Ignore some fields in the base configs

Sometimes, you may set `_delete_=True` to ignore some of the fields in base configs.
You may refer to [MMEngine config tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html) for a simple illustration.

In MMDetection3D, for example, to change the neck of PointPillars with the following config:

```python
model = dict(
    type='MVXFasterRCNN',
    data_preprocessor=dict(voxel_layer=dict(...)),
    pts_voxel_encoder=dict(...),
    pts_middle_encoder=dict(...),
    pts_backbone=dict(...),
    pts_neck=dict(
        type='FPN',
        norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
        act_cfg=dict(type='ReLU'),
        in_channels=[64, 128, 256],
        out_channels=256,
        start_level=0,
        num_outs=3),
    pts_bbox_head=dict(...))
```

`FPN` and `SECONDFPN` use different keywords to construct:

```python
_base_ = '../_base_/models/pointpillars_hv_fpn_nus.py'
model = dict(
    pts_neck=dict(
        _delete_=True,
        type='SECONDFPN',
        norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    pts_bbox_head=dict(...))
```

The `_delete_=True` would replace all old keys in `pts_neck` field with new keys.

### Use intermediate variables in configs

Some intermediate variables are used in the configs files, like `train_pipeline`/`test_pipeline` in datasets.
It's worth noting that when modifying intermediate variables in the children configs, user needs to pass the intermediate variables into corresponding fields again.
For example, we would like to use a multi-scale strategy to train and test a PointPillars, `train_pipeline`/`test_pipeline` are intermediate variables we would like to modify.

```python
_base_ = './nus-3d.py'
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.3925, 0.3925],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0, 0, 0]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='PointShuffle'),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_labels_3d', 'gt_bboxes_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        load_dim=5,
        use_dim=5,
        backend_args=backend_args),
    dict(
        type='LoadPointsFromMultiSweeps',
        sweeps_num=10,
        backend_args=backend_args),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=[0.95, 1.0, 1.05],
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline))
```

We first define the new `train_pipeline`/`test_pipeline` and pass them into dataloader fields.

### Reuse variables in \_base\_ file

If the users want to reuse the variables in the base file, they can get a copy of the corresponding variable by using `{{_base_.xxx}}`. E.g:

```python
_base_ = './pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py'

a = {{_base_.model}}  # variable `a` is equal to the `model` defined in `_base_`
```

## Modify config through script arguments

When submitting jobs using `tools/train.py` or `tools/test.py`, you may specify `--cfg-options` to in-place modify the config.

- Update config keys of dict chains

  The config options can be specified following the order of the dict keys in the original config.
  For example, `--cfg-options model.backbone.norm_eval=False` changes the all BN modules in model backbones to `train` mode.

- Update keys inside a list of configs

  Some config dicts are composed as a list in your config. For example, the training pipeline `train_dataloader.dataset.pipeline` is normally a list
  e.g. `[dict(type='LoadPointsFromFile'), ...]`. If you want to change `'LoadPointsFromFile'` to `'LoadPointsFromDict'` in the pipeline,
  you may specify `--cfg-options data.train.pipeline.0.type=LoadPointsFromDict`.

- Update values of list/tuple

  If the value to be updated is a list or a tuple. For example, the config file normally sets `model.data_preprocessor.mean=[123.675, 116.28, 103.53]`. If you want to
  change the mean values, you may specify `--cfg-options model.data_preprocessor.mean="[127,127,127]"`. Note that the quotation mark `"` is necessary to
  support list/tuple data types, and that **NO** white space is allowed inside the quotation marks in the specified value.

## Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

```
{algorithm name}_{model component names [component1]_[component2]_[...]}_{training settings}_{training dataset information}_{testing dataset information}.py
```

The file name is divided to five parts. All parts and components are connected with `_` and words of each part or component should be connected with `-`.

- `{algorithm name}`: The name of the algorithm. It can be a detector name such as `pointpillars`, `fcos3d`, etc.
- `{model component names}`: Names of the components used in the algorithm such as voxel_encoder, backbone, neck, etc. For example, `second_secfpn_head-dcn-circlenms` means using SECOND's SparseEncoder, SECONDFPN and a detection head with DCN and circle NMS.
- `{training settings}`: Information of training settings such as batch size, augmentations, loss trick, scheduler, and epochs/iterations. For example: `8xb4-tta-cyclic-20e` means using 8-gpus x 4-samples-per-gpu, test time augmentation, cyclic annealing learning rate, and train 20 epochs.
  Some abbreviations:
  - `{gpu x batch_per_gpu}`: GPUs and samples per GPU. `bN` indicates N batch size per GPU. E.g. `4xb4` is the short term of 4-GPUs x 4-samples-per-GPU.
  - `{schedule}`: training schedule, options are `schedule-2x`, `schedule-3x`, `cyclic-20e`, etc.
    `schedule-2x` and `schedule-3x` mean 24 epochs and 36 epochs respectively.
    `cyclic-20e` means 20 epochs respectively.
- `{training dataset information}`: Training dataset names like `kitti-3d-3class`, `nus-3d`, `s3dis-seg`, `scannet-seg`, `waymoD5-3d-car`. Here `3d` means dataset used for 3D object detection, and `seg` means dataset used for point cloud segmentation.
- `{testing dataset information}` (optional): Testing dataset name for models trained on one dataset but tested on another. If not mentioned, it means the model was trained and tested on the same dataset type.