File size: 9,887 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# SUN RGB-D Dataset

## Dataset preparation

For the overall process, please refer to the [README](https://github.com/open-mmlab/mmdetection3d/blob/master/data/sunrgbd/README.md) page for SUN RGB-D.

### Download SUN RGB-D data and toolbox

Download SUNRGBD data [HERE](http://rgbd.cs.princeton.edu/data/). Then, move `SUNRGBD.zip`, `SUNRGBDMeta2DBB_v2.mat`, `SUNRGBDMeta3DBB_v2.mat` and `SUNRGBDtoolbox.zip` to the `OFFICIAL_SUNRGBD` folder, unzip the zip files.

The directory structure before data preparation should be as below:

```
sunrgbd
β”œβ”€β”€ README.md
β”œβ”€β”€ matlab
β”‚   β”œβ”€β”€ extract_rgbd_data_v1.m
β”‚   β”œβ”€β”€ extract_rgbd_data_v2.m
β”‚   β”œβ”€β”€ extract_split.m
β”œβ”€β”€ OFFICIAL_SUNRGBD
β”‚   β”œβ”€β”€ SUNRGBD
β”‚   β”œβ”€β”€ SUNRGBDMeta2DBB_v2.mat
β”‚   β”œβ”€β”€ SUNRGBDMeta3DBB_v2.mat
β”‚   β”œβ”€β”€ SUNRGBDtoolbox
```

### Extract data and annotations for 3D detection from raw data

Extract SUN RGB-D annotation data from raw annotation data by running (this requires MATLAB installed on your machine):

```bash
matlab -nosplash -nodesktop -r 'extract_split;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v2;quit;'
matlab -nosplash -nodesktop -r 'extract_rgbd_data_v1;quit;'
```

The main steps include:

- Extract train and val split.
- Extract data for 3D detection from raw data.
- Extract and format detection annotation from raw data.

The main component of `extract_rgbd_data_v2.m` which extracts point cloud data from depth map is as follows:

```matlab
data = SUNRGBDMeta(imageId);
data.depthpath(1:16) = '';
data.depthpath = strcat('../OFFICIAL_SUNRGBD', data.depthpath);
data.rgbpath(1:16) = '';
data.rgbpath = strcat('../OFFICIAL_SUNRGBD', data.rgbpath);

% extract point cloud from depth map
[rgb,points3d,depthInpaint,imsize]=read3dPoints(data);
rgb(isnan(points3d(:,1)),:) = [];
points3d(isnan(points3d(:,1)),:) = [];
points3d_rgb = [points3d, rgb];

% MAT files are 3x smaller than TXT files. In Python we can use
% scipy.io.loadmat('xxx.mat')['points3d_rgb'] to load the data.
mat_filename = strcat(num2str(imageId,'%06d'), '.mat');
txt_filename = strcat(num2str(imageId,'%06d'), '.txt');
% save point cloud data
parsave(strcat(depth_folder, mat_filename), points3d_rgb);
```

The main component of `extract_rgbd_data_v1.m` which extracts annotation is as follows:

```matlab
% Write 2D and 3D box label
data2d = data;
fid = fopen(strcat(det_label_folder, txt_filename), 'w');
for j = 1:length(data.groundtruth3DBB)
    centroid = data.groundtruth3DBB(j).centroid;  % 3D bbox center
    classname = data.groundtruth3DBB(j).classname;  % class name
    orientation = data.groundtruth3DBB(j).orientation;  % 3D bbox orientation
    coeffs = abs(data.groundtruth3DBB(j).coeffs);  % 3D bbox size
    box2d = data2d.groundtruth2DBB(j).gtBb2D;  % 2D bbox
    fprintf(fid, '%s %d %d %d %d %f %f %f %f %f %f %f %f\n', classname, box2d(1), box2d(2), box2d(3), box2d(4), centroid(1), centroid(2), centroid(3), coeffs(1), coeffs(2), coeffs(3), orientation(1), orientation(2));
end
fclose(fid);
```

The above two scripts call functions such as `read3dPoints` from the [toolbox](https://rgbd.cs.princeton.edu/data/SUNRGBDtoolbox.zip) provided by SUN RGB-D.

The directory structure after extraction should be as follows.

```
sunrgbd
β”œβ”€β”€ README.md
β”œβ”€β”€ matlab
β”‚   β”œβ”€β”€ extract_rgbd_data_v1.m
β”‚   β”œβ”€β”€ extract_rgbd_data_v2.m
β”‚   β”œβ”€β”€ extract_split.m
β”œβ”€β”€ OFFICIAL_SUNRGBD
β”‚   β”œβ”€β”€ SUNRGBD
β”‚   β”œβ”€β”€ SUNRGBDMeta2DBB_v2.mat
β”‚   β”œβ”€β”€ SUNRGBDMeta3DBB_v2.mat
β”‚   β”œβ”€β”€ SUNRGBDtoolbox
β”œβ”€β”€ sunrgbd_trainval
β”‚   β”œβ”€β”€ calib
β”‚   β”œβ”€β”€ depth
β”‚   β”œβ”€β”€ image
β”‚   β”œβ”€β”€ label
β”‚   β”œβ”€β”€ label_v1
β”‚   β”œβ”€β”€ seg_label
β”‚   β”œβ”€β”€ train_data_idx.txt
β”‚   β”œβ”€β”€ val_data_idx.txt
```

Under each following folder there are overall 5285 train files and 5050 val files:

- `calib`: Camera calibration information in `.txt`
- `depth`: Point cloud saved in `.mat` (xyz+rgb)
- `image`: Image data in `.jpg`
- `label`: Detection annotation data in `.txt` (version 2)
- `label_v1`: Detection annotation data in `.txt` (version 1)
- `seg_label`: Segmentation annotation data in `.txt`

Currently, we use v1 data for training and testing, so the version 2 labels are unused.

### Create dataset

Please run the command below to create the dataset.

```shell
python tools/create_data.py sunrgbd --root-path ./data/sunrgbd \
--out-dir ./data/sunrgbd --extra-tag sunrgbd
```

or (if in a slurm environment)

```
bash tools/create_data.sh <job_name> sunrgbd
```

The above point cloud data are further saved in `.bin` format. Meanwhile `.pkl` info files are also generated for saving annotation and metadata.

The directory structure after processing should be as follows.

```
sunrgbd
β”œβ”€β”€ README.md
β”œβ”€β”€ matlab
β”‚   β”œβ”€β”€ ...
β”œβ”€β”€ OFFICIAL_SUNRGBD
β”‚   β”œβ”€β”€ ...
β”œβ”€β”€ sunrgbd_trainval
β”‚   β”œβ”€β”€ ...
β”œβ”€β”€ points
β”œβ”€β”€ sunrgbd_infos_train.pkl
β”œβ”€β”€ sunrgbd_infos_val.pkl
```

- `points/xxxxxx.bin`: The point cloud data after downsample.
- `sunrgbd_infos_train.pkl`: The train data infos, the detailed info of each scene is as follows:
  - info\['lidar_points'\]: A dict containing all information related to the the lidar points.
    - info\['lidar_points'\]\['num_pts_feats'\]: The feature dimension of point.
    - info\['lidar_points'\]\['lidar_path'\]: The filename of the lidar point cloud data.
  - info\['images'\]: A dict containing all information relate to the image data.
    - info\['images'\]\['CAM0'\]\['img_path'\]: The filename of the image.
    - info\['images'\]\['CAM0'\]\['depth2img'\]: Transformation matrix from depth to image with shape (4, 4).
    - info\['images'\]\['CAM0'\]\['height'\]: The height of image.
    - info\['images'\]\['CAM0'\]\['width'\]: The width of image.
  - info\['instances'\]: A list of dict contains all the annotations of this frame. Each dict corresponds to annotations of single instance. For the i-th instance:
    - info\['instances'\]\[i\]\['bbox_3d'\]: List of 7 numbers representing the 3D bounding box in depth coordinate system.
    - info\['instances'\]\[i\]\['bbox'\]: List of 4 numbers representing the 2D bounding box of the instance, in (x1, y1, x2, y2) order.
    - info\['instances'\]\[i\]\['bbox_label_3d'\]: An int indicates the 3D label of instance and the -1 indicates ignore class.
    - info\['instances'\]\[i\]\['bbox_label'\]: An int indicates the 2D label of instance and the -1 indicates ignore class.
- `sunrgbd_infos_val.pkl`: The val data infos, which shares the same format as `sunrgbd_infos_train.pkl`.

## Train pipeline

A typical train pipeline of SUN RGB-D for point cloud only 3D detection is as follows.

```python
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadAnnotations3D'),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(type='PointSample', num_points=20000),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
```

Data augmentation for point clouds:

- `RandomFlip3D`: randomly flip the input point cloud horizontally or vertically.
- `GlobalRotScaleTrans`: rotate the input point cloud, usually in the range of \[-30, 30\] (degrees) for SUN RGB-D; then scale the input point cloud, usually in the range of \[0.85, 1.15\] for SUN RGB-D; finally translate the input point cloud, usually by 0 for SUN RGB-D (which means no translation).
- `PointSample`: downsample the input point cloud.

A typical train pipeline of SUN RGB-D for multi-modality (point cloud and image) 3D detection is as follows.

```python
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='DEPTH',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations3D'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', scale=(1333, 600), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.0),
    dict(type='Pad', size_divisor=32),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
    ),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.523599, 0.523599],
        scale_ratio_range=[0.85, 1.15],
        shift_height=True),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d','img', 'gt_bboxes', 'gt_bboxes_labels'])
]
```

Data augmentation for images:

- `Resize`: resize the input image, `keep_ratio=True` means the ratio of the image is kept unchanged.
- `RandomFlip`: randomly flip the input image.

The image augmentation functions are implemented in [MMDetection](https://github.com/open-mmlab/mmdetection/tree/dev-3.x/mmdet/datasets/transforms).

## Metrics

Same as ScanNet, typically mean Average Precision (mAP) is used for evaluation on SUN RGB-D, e.g. `[email protected]` and `[email protected]`. In detail, a generic function to compute precision and recall for 3D object detection for multiple classes is called. Please refer to [indoor_eval](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/mmdet3d/evaluation/functional/indoor_eval.py) for more details.

Since SUN RGB-D consists of image data, detection on image data is also feasible. For instance, in ImVoteNet, we first train an image detector, and we also use mAP for evaluation, e.g. `[email protected]`. We use the `eval_map` function from [MMDetection](https://github.com/open-mmlab/mmdetection) to calculate mAP.