File size: 10,875 Bytes
34d1f8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# KITTI Dataset
This page provides specific tutorials about the usage of MMDetection3D for KITTI dataset.
## Prepare dataset
You can download KITTI 3D detection data [HERE](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d) and unzip all zip files. Besides, the road planes could be downloaded from [HERE](https://download.openmmlab.com/mmdetection3d/data/train_planes.zip), which are optional for data augmentation during training for better performance. The road planes are generated by [AVOD](https://github.com/kujason/avod), you can see more details [HERE](https://github.com/kujason/avod/issues/19).
Like the general way to prepare dataset, it is recommended to symlink the dataset root to `$MMDETECTION3D/data`.
The folder structure should be organized as follows before our processing.
```
mmdetection3d
βββ mmdet3d
βββ tools
βββ configs
βββ data
β βββ kitti
β β βββ ImageSets
β β βββ testing
β β β βββ calib
β β β βββ image_2
β β β βββ velodyne
β β βββ training
β β β βββ calib
β β β βββ image_2
β β β βββ label_2
β β β βββ velodyne
β β β βββ planes (optional)
```
### Create KITTI dataset
To create KITTI point cloud data, we load the raw point cloud data and generate the relevant annotations including object labels and bounding boxes. We also generate all single training objects' point cloud in KITTI dataset and save them as `.bin` files in `data/kitti/kitti_gt_database`. Meanwhile, `.pkl` info files are also generated for training or validation. Subsequently, create KITTI data by running:
```bash
mkdir ./data/kitti/ && mkdir ./data/kitti/ImageSets
# Download data split
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/test.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/test.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/train.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/train.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/val.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/val.txt
wget -c https://raw.githubusercontent.com/traveller59/second.pytorch/master/second/data/ImageSets/trainval.txt --no-check-certificate --content-disposition -O ./data/kitti/ImageSets/trainval.txt
python tools/create_data.py kitti --root-path ./data/kitti --out-dir ./data/kitti --extra-tag kitti --with-plane
```
Note that if your local disk does not have enough space for saving converted data, you can change the `--out-dir` to anywhere else, and you need to remove the `--with-plane` flag if `planes` are not prepared.
The folder structure after processing should be as below
```
kitti
βββ ImageSets
β βββ test.txt
β βββ train.txt
β βββ trainval.txt
β βββ val.txt
βββ testing
β βββ calib
β βββ image_2
β βββ velodyne
β βββ velodyne_reduced
βββ training
β βββ calib
β βββ image_2
β βββ label_2
β βββ velodyne
β βββ velodyne_reduced
β βββ planes (optional)
βββ kitti_gt_database
β βββ xxxxx.bin
βββ kitti_infos_train.pkl
βββ kitti_infos_val.pkl
βββ kitti_dbinfos_train.pkl
βββ kitti_infos_test.pkl
βββ kitti_infos_trainval.pkl
```
- `kitti_gt_database/xxxxx.bin`: point cloud data included in each 3D bounding box of the training dataset.
- `kitti_infos_train.pkl`: training dataset, a dict contains two keys: `metainfo` and `data_list`.
`metainfo` contains the basic information for the dataset itself, such as `categories`, `dataset` and `info_version`, while `data_list` is a list of dict, each dict (hereinafter referred to as `info`) contains all the detailed information of single sample as follows:
- info\['sample_idx'\]: The index of this sample in the whole dataset.
- info\['images'\]: Information of images captured by multiple cameras. A dict contains five keys including: `CAM0`, `CAM1`, `CAM2`, `CAM3`, `R0_rect`.
- info\['images'\]\['R0_rect'\]: Rectifying rotation matrix with shape (4, 4).
- info\['images'\]\['CAM2'\]: Include some information about the `CAM2` camera sensor.
- info\['images'\]\['CAM2'\]\['img_path'\]: The filename of the image.
- info\['images'\]\['CAM2'\]\['height'\]: The height of the image.
- info\['images'\]\['CAM2'\]\['width'\]: The width of the image.
- info\['images'\]\['CAM2'\]\['cam2img'\]: Transformation matrix from camera to image with shape (4, 4).
- info\['images'\]\['CAM2'\]\['lidar2cam'\]: Transformation matrix from lidar to camera with shape (4, 4).
- info\['images'\]\['CAM2'\]\['lidar2img'\]: Transformation matrix from lidar to image with shape (4, 4).
- info\['lidar_points'\]: A dict containing all the information related to the lidar points.
- info\['lidar_points'\]\['lidar_path'\]: The filename of the lidar point cloud data.
- info\['lidar_points'\]\['num_pts_feats'\]: The feature dimension of point.
- info\['lidar_points'\]\['Tr_velo_to_cam'\]: Transformation from Velodyne coordinate to camera coordinate with shape (4, 4).
- info\['lidar_points'\]\['Tr_imu_to_velo'\]: Transformation from IMU coordinate to Velodyne coordinate with shape (4, 4).
- info\['instances'\]: It is a list of dict. Each dict contains all annotation information of single instance. For the i-th instance:
- info\['instances'\]\[i\]\['bbox'\]: List of 4 numbers representing the 2D bounding box of the instance, in (x1, y1, x2, y2) order.
- info\['instances'\]\[i\]\['bbox_3d'\]: List of 7 numbers representing the 3D bounding box of the instance, in (x, y, z, l, h, w, yaw) order.
- info\['instances'\]\[i\]\['bbox_label'\]: An int indicate the 2D label of instance and the -1 indicating ignore.
- info\['instances'\]\[i\]\['bbox_label_3d'\]: An int indicate the 3D label of instance and the -1 indicating ignore.
- info\['instances'\]\[i\]\['depth'\]: Projected center depth of the 3D bounding box with respect to the image plane.
- info\['instances'\]\[i\]\['num_lidar_pts'\]: The number of LiDAR points in the 3D bounding box.
- info\['instances'\]\[i\]\['center_2d'\]: Projected 2D center of the 3D bounding box.
- info\['instances'\]\[i\]\['difficulty'\]: KITTI difficulty: 'Easy', 'Moderate', 'Hard'.
- info\['instances'\]\[i\]\['truncated'\]: Float from 0 (non-truncated) to 1 (truncated), where truncated refers to the object leaving image boundaries.
- info\['instances'\]\[i\]\['occluded'\]: Integer (0,1,2,3) indicating occlusion state: 0 = fully visible, 1 = partly occluded, 2 = largely occluded, 3 = unknown.
- info\['instances'\]\[i\]\['group_ids'\]: Used for multi-part object.
- info\['plane'\](optional): Road level information.
Please refer to [kitti_converter.py](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/kitti_converter.py) and [update_infos_to_v2.py ](https://github.com/open-mmlab/mmdetection3d/blob/dev-1.x/tools/dataset_converters/update_infos_to_v2.py) for more details.
## Train pipeline
A typical train pipeline of 3D detection on KITTI is as below:
```python
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=4, # x, y, z, intensity
use_dim=4),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='ObjectNoise',
num_try=100,
translation_std=[1.0, 1.0, 0.5],
global_rot_range=[0.0, 0.0],
rot_range=[-0.78539816, 0.78539816]),
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.78539816, 0.78539816],
scale_ratio_range=[0.95, 1.05]),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
```
- Data augmentation:
- `ObjectNoise`: apply noise to each GT objects in the scene.
- `RandomFlip3D`: randomly flip input point cloud horizontally or vertically.
- `GlobalRotScaleTrans`: rotate input point cloud.
## Evaluation
An example to evaluate PointPillars with 8 GPUs with kitti metrics is as follows:
```shell
bash tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py work_dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8
```
## Metrics
KITTI evaluates 3D object detection performance using mean Average Precision (mAP) and Average Orientation Similarity (AOS), Please refer to its [official website](http://www.cvlibs.net/datasets/kitti/eval_3dobject.php) and [original paper](http://www.cvlibs.net/publications/Geiger2012CVPR.pdf) for more details.
We also adopt this approach for evaluation on KITTI. An example of printed evaluation results is as follows:
```
Car [email protected], 0.70, 0.70:
bbox AP:97.9252, 89.6183, 88.1564
bev AP:90.4196, 87.9491, 85.1700
3d AP:88.3891, 77.1624, 74.4654
aos AP:97.70, 89.11, 87.38
Car [email protected], 0.50, 0.50:
bbox AP:97.9252, 89.6183, 88.1564
bev AP:98.3509, 90.2042, 89.6102
3d AP:98.2800, 90.1480, 89.4736
aos AP:97.70, 89.11, 87.38
```
## Testing and make a submission
An example to test PointPillars on KITTI with 8 GPUs and generate a submission to the leaderboard is as follows:
- First, you need to modify the `test_dataloader` and `test_evaluator` dict in your config file, just like:
```python
data_root = 'data/kitti/'
test_dataloader = dict(
dataset=dict(
ann_file='kitti_infos_test.pkl',
load_eval_anns=False,
data_prefix=dict(pts='testing/velodyne_reduced')))
test_evaluator = dict(
ann_file=data_root + 'kitti_infos_test.pkl',
format_only=True,
pklfile_prefix='results/kitti-3class/kitti_results',
submission_prefix='results/kitti-3class/kitti_results')
```
- And then, you can run the test script.
```shell
./tools/dist_test.sh configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py work_dirs/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class/latest.pth 8
```
After generating `results/kitti-3class/kitti_results/xxxxx.txt` files, you can submit these files to KITTI benchmark. Please refer to the [KITTI official website](http://www.cvlibs.net/datasets/kitti/index.php) for more details.
|