File size: 18,489 Bytes
34d1f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Customize Datasets

In this note, you will know how to train and test predefined models with customized datasets.

The basic steps are as below:

1. Prepare data
2. Prepare a config
3. Train, test and inference models on the customized dataset

## Data Preparation

The ideal situation is that we can reorganize the customized raw data and convert the annotation format into KITTI style. However, considering some calibration files and 3D annotations in KITTI format are difficult to obtain for customized datasets, we introduce the basic data format in the doc.

### Basic Data Format

#### Point cloud Format

Currently, we only support `.bin` format point cloud for training and inference. Before training on your own datasets, you need to convert your point cloud files with other formats to `.bin` files. The common point cloud data formats include `.pcd` and `.las`, we list some open-source tools for reference.

1. Convert `.pcd` to `.bin`: https://github.com/DanielPollithy/pypcd

- You can install `pypcd` with the following command:

  ```bash
  pip install git+https://github.com/DanielPollithy/pypcd.git
  ```

- You can use the following script to read the `.pcd` file and convert it to `.bin` format for saving:

  ```python
  import numpy as np
  from pypcd import pypcd

  pcd_data = pypcd.PointCloud.from_path('point_cloud_data.pcd')
  points = np.zeros([pcd_data.width, 4], dtype=np.float32)
  points[:, 0] = pcd_data.pc_data['x'].copy()
  points[:, 1] = pcd_data.pc_data['y'].copy()
  points[:, 2] = pcd_data.pc_data['z'].copy()
  points[:, 3] = pcd_data.pc_data['intensity'].copy().astype(np.float32)
  with open('point_cloud_data.bin', 'wb') as f:
      f.write(points.tobytes())
  ```

2. Convert `.las` to `.bin`: The common conversion path is `.las -> .pcd -> .bin`, and the conversion path `.las -> .pcd` can be achieved through [this tool](https://github.com/Hitachi-Automotive-And-Industry-Lab/semantic-segmentation-editor).

#### Label Format

The most basic information: 3D bounding box and category label of each scene need to be contained in the `.txt` annotation file. Each line represents a 3D box in a certain scene as follow:

```
# format: [x, y, z, dx, dy, dz, yaw, category_name]
1.23 1.42 0.23 3.96 1.65 1.55 1.56 Car
3.51 2.15 0.42 1.05 0.87 1.86 1.23 Pedestrian
...
```

**Note**: Currently we only support KITTI Metric evaluation for customized datasets evaluation.

The 3D Box should be stored in unified 3D coordinates.

#### Calibration Format

For the point cloud data collected by each LiDAR, they are usually fused and converted to a certain LiDAR coordinate. So typically the calibration information file should contain the intrinsic matrix of each camera and the transformation extrinsic matrix from the LiDAR to each camera in `.txt` calibration file, while `Px` represents the intrinsic matrix of `camera_x` and `lidar2camx` represents the transformation extrinsic matrix from the `lidar` to `camera_x`.

```
P0
P1
P2
P3
P4
...
lidar2cam0
lidar2cam1
lidar2cam2
lidar2cam3
lidar2cam4
...
```

### Raw Data Structure

#### LiDAR-Based 3D Detection

The raw data for LiDAR-based 3D object detection are typically organized as follows, where `ImageSets` contains split files indicating which files belong to training/validation set, `points` includes point cloud data which are supposed to be stored in `.bin` format and `labels` includes label files for 3D detection.

```
mmdetection3d
β”œβ”€β”€ mmdet3d
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ custom
β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”œβ”€β”€ points
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ labels
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
```

#### Vision-Based 3D Detection

The raw data for vision-based 3D object detection are typically organized as follows, where `ImageSets` contains split files indicating which files belong to training/validation set, `images` contains the images from different cameras, for example, images from `camera_x` need to be placed in `images/images_x`, `calibs` contains calibration information files which store the camera intrinsic matrix of each camera, and `labels` includes label files for 3D detection.

```
mmdetection3d
β”œβ”€β”€ mmdet3d
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ custom
β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”œβ”€β”€ calibs
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ images_0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   β”œβ”€β”€ images_1
β”‚   β”‚   β”‚   β”œβ”€β”€ images_2
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ labels
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
```

#### Multi-Modality 3D Detection

The raw data for multi-modality 3D object detection are typically organized as follows. Different from vision-based 3D object detection, calibration information files in `calibs` store the camera intrinsic matrix of each camera and extrinsic matrix.

```
mmdetection3d
β”œβ”€β”€ mmdet3d
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ custom
β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”œβ”€β”€ calibs
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ points
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ images
β”‚   β”‚   β”‚   β”œβ”€β”€ images_0
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.png
β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   β”œβ”€β”€ images_1
β”‚   β”‚   β”‚   β”œβ”€β”€ images_2
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ labels
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
```

#### LiDAR-Based 3D Semantic Segmentation

The raw data for LiDAR-based 3D semantic segmentation are typically organized as follows, where `ImageSets` contains split files indicating which files belong to training/validation set, `points` includes point cloud data, and `semantic_mask` includes point-level label.

```
mmdetection3d
β”œβ”€β”€ mmdet3d
β”œβ”€β”€ tools
β”œβ”€β”€ configs
β”œβ”€β”€ data
β”‚   β”œβ”€β”€ custom
β”‚   β”‚   β”œβ”€β”€ ImageSets
β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt
β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt
β”‚   β”‚   β”œβ”€β”€ points
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”œβ”€β”€ semantic_mask
β”‚   β”‚   β”‚   β”œβ”€β”€ 000000.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ 000001.bin
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
```

### Data Converter

Once you prepared the raw data following our instruction, you can directly use the following command to generate training/validation information files.

```bash
python tools/create_data.py custom --root-path ./data/custom --out-dir ./data/custom --extra-tag custom
```

## An example of customized dataset

Once we finish data preparation, we can create a new dataset in `mmdet3d/datasets/my_dataset.py` to load the data.

```python
import mmengine

from mmdet3d.registry import DATASETS
from .det3d_dataset import Det3DDataset


@DATASETS.register_module()
class MyDataset(Det3DDataset):

    # replace with all the classes in customized pkl info file
    METAINFO = {
        'classes': ('Pedestrian', 'Cyclist', 'Car')
    }

    def parse_ann_info(self, info):
        """Process the `instances` in data info to `ann_info`.

        Args:
            info (dict): Data information of single data sample.

        Returns:
            dict: Annotation information consists of the following keys:

                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
                  3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
        """
        ann_info = super().parse_ann_info(info)
        if ann_info is None:
            ann_info = dict()
            # empty instance
            ann_info['gt_bboxes_3d'] = np.zeros((0, 7), dtype=np.float32)
            ann_info['gt_labels_3d'] = np.zeros(0, dtype=np.int64)

        # filter the gt classes not used in training
        ann_info = self._remove_dontcare(ann_info)
        gt_bboxes_3d = LiDARInstance3DBoxes(ann_info['gt_bboxes_3d'])
        ann_info['gt_bboxes_3d'] = gt_bboxes_3d
        return ann_info
```

After the data pre-processing, there are two steps for users to train the customized new dataset:

1. Modify the config file for using the customized dataset.
2. Check the annotations of the customized dataset.

Here we take training PointPillars on customized dataset as an example:

### Prepare a config

Here we demonstrate a config sample for pure point cloud training.

#### Prepare dataset config

In `configs/_base_/datasets/custom.py`:

```python
# dataset settings
dataset_type = 'MyDataset'
data_root = 'data/custom/'
class_names = ['Pedestrian', 'Cyclist', 'Car']  # replace with your dataset class
point_cloud_range = [0, -40, -3, 70.4, 40, 1]  # adjust according to your dataset
input_modality = dict(use_lidar=True, use_camera=False)
metainfo = dict(classes=class_names)

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,  # replace with your point cloud data dimension
        use_dim=4),  # replace with the actual dimension used in training and inference
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointShuffle'),
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,  # replace with your point cloud data dimension
        use_dim=4),
    dict(type='Pack3DDetInputs', keys=['points'])
]
# construct a pipeline for data and gt loading in show function
eval_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(type='Pack3DDetInputs', keys=['points']),
]
train_dataloader = dict(
    batch_size=6,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='RepeatDataset',
        times=2,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file='custom_infos_train.pkl',  # specify your training pkl info
            data_prefix=dict(pts='points'),
            pipeline=train_pipeline,
            modality=input_modality,
            test_mode=False,
            metainfo=metainfo,
            box_type_3d='LiDAR')))
val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(pts='points'),
        ann_file='custom_infos_val.pkl',  # specify your validation pkl info
        pipeline=test_pipeline,
        modality=input_modality,
        test_mode=True,
        metainfo=metainfo,
        box_type_3d='LiDAR'))
val_evaluator = dict(
    type='KittiMetric',
    ann_file=data_root + 'custom_infos_val.pkl',  # specify your validation pkl info
    metric='bbox')
```

#### Prepare model config

For voxel-based detectors such as SECOND, PointPillars and CenterPoint, the point cloud range and voxel size should be adjusted according to your dataset.
Theoretically, `voxel_size` is linked to the setting of `point_cloud_range`. Setting a smaller `voxel_size` will increase the voxel num and the corresponding memory consumption. In addition, the following issues need to be noted:

If the `point_cloud_range` and `voxel_size` are set to be `[0, -40, -3, 70.4, 40, 1]` and `[0.05, 0.05, 0.1]` respectively, then the shape of intermediate feature map should be `[(1-(-3))/0.1+1, (40-(-40))/0.05, (70.4-0)/0.05]=[41, 1600, 1408]`. When changing `point_cloud_range`, remember to change the shape of intermediate feature map in `middle_encoder` according to the `voxel_size`.

Regarding the setting of `anchor_range`, it is generally adjusted according to dataset. Note that `z` value needs to be adjusted accordingly to the position of the point cloud, please refer to this [issue](https://github.com/open-mmlab/mmdetection3d/issues/986).

Regarding the setting of `anchor_size`, it is usually necessary to count the average length, width and height of objects in the entire training dataset as `anchor_size` to obtain the best results.

In `configs/_base_/models/pointpillars_hv_secfpn_custom.py`:

```python
voxel_size = [0.16, 0.16, 4]  # adjust according to your dataset
point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1]  # adjust according to your dataset
model = dict(
    type='VoxelNet',
    data_preprocessor=dict(
        type='Det3DDataPreprocessor',
        voxel=True,
        voxel_layer=dict(
            max_num_points=32,
            point_cloud_range=point_cloud_range,
            voxel_size=voxel_size,
            max_voxels=(16000, 40000))),
    voxel_encoder=dict(
        type='PillarFeatureNet',
        in_channels=4,
        feat_channels=[64],
        with_distance=False,
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range),
    # the `output_shape` should be adjusted according to `point_cloud_range`
    # and `voxel_size`
    middle_encoder=dict(
        type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]),
    backbone=dict(
        type='SECOND',
        in_channels=64,
        layer_nums=[3, 5, 5],
        layer_strides=[2, 2, 2],
        out_channels=[64, 128, 256]),
    neck=dict(
        type='SECONDFPN',
        in_channels=[64, 128, 256],
        upsample_strides=[1, 2, 4],
        out_channels=[128, 128, 128]),
    bbox_head=dict(
        type='Anchor3DHead',
        num_classes=3,
        in_channels=384,
        feat_channels=384,
        use_direction_classifier=True,
        assign_per_class=True,
        # adjust the `ranges` and `sizes` according to your dataset
        anchor_generator=dict(
            type='AlignedAnchor3DRangeGenerator',
            ranges=[
                [0, -39.68, -0.6, 69.12, 39.68, -0.6],
                [0, -39.68, -0.6, 69.12, 39.68, -0.6],
                [0, -39.68, -1.78, 69.12, 39.68, -1.78],
            ],
            sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
            rotations=[0, 1.57],
            reshape_out=False),
        diff_rad_by_sin=True,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
        loss_cls=dict(
            type='mmdet.FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(
            type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
        loss_dir=dict(
            type='mmdet.CrossEntropyLoss', use_sigmoid=False,
            loss_weight=0.2)),
    # model training and testing settings
    train_cfg=dict(
        assigner=[
            dict(  # for Pedestrian
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.5,
                neg_iou_thr=0.35,
                min_pos_iou=0.35,
                ignore_iof_thr=-1),
            dict(  # for Cyclist
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.5,
                neg_iou_thr=0.35,
                min_pos_iou=0.35,
                ignore_iof_thr=-1),
            dict(  # for Car
                type='Max3DIoUAssigner',
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.6,
                neg_iou_thr=0.45,
                min_pos_iou=0.45,
                ignore_iof_thr=-1),
        ],
        allowed_border=0,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        use_rotate_nms=True,
        nms_across_levels=False,
        nms_thr=0.01,
        score_thr=0.1,
        min_bbox_size=0,
        nms_pre=100,
        max_num=50))
```

#### Prepare overall config

We combine all the configs above in `configs/pointpillars/pointpillars_hv_secfpn_8xb6_custom.py`:

```python
_base_ = [
    '../_base_/models/pointpillars_hv_secfpn_custom.py',
    '../_base_/datasets/custom.py',
    '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
]
```

#### Visualize your dataset (optional)

To validate whether your prepared data and config are correct, it's highly recommended to use `tools/misc/browse_dataset.py` script
to visualize your dataset and annotations before training and validation. Please refer to [visualization doc](https://mmdetection3d.readthedocs.io/en/dev-1.x/user_guides/visualization.html) for more details.

## Evaluation

Once the data and config have been prepared, you can directly run the training/testing script following our doc.

**Note**: We only provide an implementation for KITTI style evaluation for the customized dataset. It should be included in the dataset config:

```python
val_evaluator = dict(
    type='KittiMetric',
    ann_file=data_root + 'custom_infos_val.pkl',  # specify your validation pkl info
    metric='bbox')
```