emeersman's picture
Add random seeding if specified and train pipeline on base model
9c175fd
raw
history blame
2.02 kB
from typing import Dict, List, Any
import torch
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("need to run on GPU")
model_id = "stabilityai/stable-diffusion-2-1-base"
class EndpointHandler():
def __init__(self):
# load the optimized model
self.pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
self.pipe = self.pipe.to(device)
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
prompt = data.pop("inputs", data)
params = data.pop("parameters", data)
# hyperparamters
num_inference_steps = params.pop("num_inference_steps", 20)
guidance_scale = params.pop("guidance_scale", 7.5)
negative_prompt = params.pop("negative_prompt", None)
height = params.pop("height", None)
width = params.pop("width", None)
manual_seed = params.pop("manual_seed", -1)
generator = torch.Generator(device)
if (manual_seed != -1)
generator.manual_seed(manual_seed)
# run inference pipeline
out = self.pipe(prompt,
generator=generator,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
negative_prompt=negative_prompt,
height=height,
width=width
)
# return first generate PIL image
return out.images[0]