File size: 1,406 Bytes
4058634
f78750a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4058634
 
f78750a
4058634
f78750a
4058634
f78750a
4058634
f78750a
 
4058634
f78750a
4058634
f78750a
4058634
f78750a
 
 
4058634
f78750a
 
 
 
 
 
4058634
f78750a
4058634
f78750a
 
4058634
f78750a
 
4058634
f78750a
4058634
f78750a
 
 
4058634
f78750a
4058634
f78750a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
base_model: mistralai/Mistral-7B-Instruct-v0.3
datasets:
- nroggendorff/profession
language:
- en
license: mit
tags:
- trl
- sft
- art
- code
- adam
- mistral
model-index:
- name: pro
  results: []
pipeline_tag: text-generation
---

# Profession LLM

Pro is a language model fine-tuned on the [Profession dataset](https://huggingface.co/datasets/nroggendorff/profession) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques.

## Features

- Utilizes SFT and TRL techniques for improved performance
- Supports English language

## Usage

To use the LLM, you can load the model using the Hugging Face Transformers library:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

model_id = "nroggendorff/mistral-pro"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config)

prompt = "[INST] Write a poem about tomatoes in the style of Poe.[/INST]"
inputs = tokenizer(prompt, return_tensors="pt")

outputs = model.generate(**inputs)

generated_text = tokenizer.batch_decode(outputs)[0]
print(generated_text)
```

## License

This project is licensed under the MIT License.