End of training
Browse files- README.md +32 -32
- config.json +1 -1
- model.safetensors +1 -1
- training_args.bin +0 -0
README.md
CHANGED
@@ -14,12 +14,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
-
- Per Category Iou: [0.
|
22 |
-
- Per Category Accuracy: [0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -51,36 +51,36 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------:|:------------------------------------------------------------:|
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
-
- Transformers 4.45.
|
84 |
- Pytorch 2.4.1+cu121
|
85 |
- Datasets 3.0.1
|
86 |
- Tokenizers 0.20.0
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0290
|
18 |
+
- Mean Iou: 0.9471
|
19 |
+
- Mean Accuracy: 0.9710
|
20 |
+
- Overall Accuracy: 0.9768
|
21 |
+
- Per Category Iou: [0.9608005440708357, 0.9099221006602166, 0.9704331381855318]
|
22 |
+
- Per Category Accuracy: [0.9824206687592316, 0.9426348262866555, 0.987965611683444]
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
51 |
|
52 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
53 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------:|:------------------------------------------------------------:|
|
54 |
+
| 0.0862 | 1.0 | 352 | 0.0576 | 0.9232 | 0.9592 | 0.9659 | [0.9447371839102795, 0.8673794852190165, 0.9574680953552409] | [0.968534005122562, 0.9283290191012513, 0.9806639382372657] |
|
55 |
+
| 0.0656 | 2.0 | 704 | 0.0545 | 0.9238 | 0.9570 | 0.9669 | [0.9478803787782473, 0.8629377451136709, 0.9606714386330129] | [0.9722807746172916, 0.9111279737034862, 0.9876936131061734] |
|
56 |
+
| 0.0618 | 3.0 | 1056 | 0.0534 | 0.9237 | 0.9564 | 0.9671 | [0.9508687060941174, 0.8596389521258784, 0.9607218269648252] | [0.9812787803688049, 0.9019564119732999, 0.9860254146647229] |
|
57 |
+
| 0.0571 | 4.0 | 1408 | 0.0499 | 0.9275 | 0.9607 | 0.9682 | [0.9502329113612598, 0.8720582640084444, 0.9601695550481213] | [0.9753690914093931, 0.924181989944127, 0.9825173933819673] |
|
58 |
+
| 0.0559 | 5.0 | 1760 | 0.0467 | 0.9299 | 0.9612 | 0.9695 | [0.9505140192865831, 0.8754764025227105, 0.9637205968987405] | [0.976237213827783, 0.9214627056007283, 0.9860167566645874] |
|
59 |
+
| 0.0536 | 6.0 | 2112 | 0.0438 | 0.9326 | 0.9635 | 0.9704 | [0.9494054620742128, 0.8841375143227368, 0.9641436146464465] | [0.9716557991857033, 0.9326334654316629, 0.9860780801551877] |
|
60 |
+
| 0.0523 | 7.0 | 2464 | 0.0430 | 0.9330 | 0.9628 | 0.9708 | [0.9528910425065712, 0.8812972916596699, 0.9647077920001537] | [0.9777607122771147, 0.9241165974328902, 0.9866203492096512] |
|
61 |
+
| 0.0501 | 8.0 | 2816 | 0.0416 | 0.9343 | 0.9638 | 0.9713 | [0.9534610878112045, 0.8855375345037919, 0.9640451917096353] | [0.9785921522904953, 0.9270713187736989, 0.9856376115075716] |
|
62 |
+
| 0.0495 | 9.0 | 3168 | 0.0397 | 0.9363 | 0.9648 | 0.9723 | [0.9545006031758507, 0.8881574910338527, 0.9661569365523052] | [0.97816237529845, 0.9291447035854092, 0.9871201770011974] |
|
63 |
+
| 0.0464 | 10.0 | 3520 | 0.0387 | 0.9381 | 0.9667 | 0.9727 | [0.9535058676791107, 0.895511422338478, 0.9654228115593686] | [0.9749859398030879, 0.9391499873921522, 0.9858483740929799] |
|
64 |
+
| 0.0469 | 11.0 | 3872 | 0.0375 | 0.9379 | 0.9655 | 0.9729 | [0.9549214957250483, 0.891720146026617, 0.9669602902499821] | [0.9773053391751129, 0.9304895573270372, 0.9885620293319832] |
|
65 |
+
| 0.046 | 12.0 | 4224 | 0.0371 | 0.9390 | 0.9665 | 0.9733 | [0.9549188445906526, 0.894997463400181, 0.9672095088085364] | [0.9775963126700038, 0.9344942222656819, 0.9874873392060299] |
|
66 |
+
| 0.0459 | 13.0 | 4576 | 0.0376 | 0.9393 | 0.9674 | 0.9732 | [0.9567727152562366, 0.8962463100368819, 0.9647967766370947] | [0.9818777935729291, 0.9374800577047236, 0.9829219394226549] |
|
67 |
+
| 0.0442 | 14.0 | 4928 | 0.0375 | 0.9378 | 0.9654 | 0.9731 | [0.9582913046479526, 0.8885196793391749, 0.9665944535904781] | [0.9867372712504237, 0.9245328196189752, 0.9850417538509562] |
|
68 |
+
| 0.0441 | 15.0 | 5280 | 0.0351 | 0.9408 | 0.9668 | 0.9743 | [0.9573946237991694, 0.8963420497950646, 0.9685835277021041] | [0.9790010413152688, 0.9318911491290942, 0.9896500148911915] |
|
69 |
+
| 0.0424 | 16.0 | 5632 | 0.0333 | 0.9430 | 0.9691 | 0.9750 | [0.9579484854107692, 0.9029111339543006, 0.9680899513313485] | [0.9799520026370737, 0.941103807023036, 0.9863855244712643] |
|
70 |
+
| 0.0422 | 17.0 | 5984 | 0.0325 | 0.9440 | 0.9693 | 0.9755 | [0.960526018065147, 0.9033327928010478, 0.9680751487957986] | [0.9829515905300688, 0.9384147284099078, 0.9865726973968797] |
|
71 |
+
| 0.0412 | 18.0 | 6336 | 0.0329 | 0.9438 | 0.9695 | 0.9752 | [0.9574622081054572, 0.9055448607955255, 0.9682452665078278] | [0.9790884406297427, 0.9425620270828011, 0.9868754080312248] |
|
72 |
+
| 0.0408 | 19.0 | 6688 | 0.0314 | 0.9450 | 0.9703 | 0.9758 | [0.9586636871431746, 0.9072926807452817, 0.9690543615214298] | [0.9803788121503738, 0.9439052138194869, 0.9866635429617163] |
|
73 |
+
| 0.0391 | 20.0 | 7040 | 0.0314 | 0.9441 | 0.9690 | 0.9757 | [0.959128342970837, 0.902939786042012, 0.9702891936150936] | [0.980902051876667, 0.9368478835131284, 0.9892370339721507] |
|
74 |
+
| 0.0397 | 21.0 | 7392 | 0.0304 | 0.9456 | 0.9701 | 0.9763 | [0.9598212480415552, 0.906699930083766, 0.9703717586568048] | [0.9813465827619545, 0.9404109518551305, 0.9885344016054268] |
|
75 |
+
| 0.0392 | 22.0 | 7744 | 0.0297 | 0.9464 | 0.9707 | 0.9765 | [0.9607482194751374, 0.9084845650132211, 0.9700107510946303] | [0.9827931258804484, 0.9417580815076976, 0.9875174387719378] |
|
76 |
+
| 0.0383 | 23.0 | 8096 | 0.0296 | 0.9464 | 0.9709 | 0.9764 | [0.9596652006117967, 0.9096179359866197, 0.9698528705786332] | [0.9807504984978905, 0.9444144788383055, 0.9875228155693943] |
|
77 |
+
| 0.0379 | 24.0 | 8448 | 0.0292 | 0.9467 | 0.9706 | 0.9767 | [0.9608055853550872, 0.9088181850778698, 0.9704877713838735] | [0.9827165687826889, 0.9406717333169016, 0.9884114527535798] |
|
78 |
+
| 0.0365 | 25.0 | 8800 | 0.0290 | 0.9471 | 0.9710 | 0.9768 | [0.9608005440708357, 0.9099221006602166, 0.9704331381855318] | [0.9824206687592316, 0.9426348262866555, 0.987965611683444] |
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
+
- Transformers 4.45.2
|
84 |
- Pytorch 2.4.1+cu121
|
85 |
- Datasets 3.0.1
|
86 |
- Tokenizers 0.20.0
|
config.json
CHANGED
@@ -68,5 +68,5 @@
|
|
68 |
2
|
69 |
],
|
70 |
"torch_dtype": "float32",
|
71 |
-
"transformers_version": "4.45.
|
72 |
}
|
|
|
68 |
2
|
69 |
],
|
70 |
"torch_dtype": "float32",
|
71 |
+
"transformers_version": "4.45.2"
|
72 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 94992836
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbe66c88671698e6cc75c7bd5673465ba55bb3c9463e71b1c84a22acf0a4f26f
|
3 |
size 94992836
|
training_args.bin
CHANGED
Binary files a/training_args.bin and b/training_args.bin differ
|
|