File size: 2,250 Bytes
3a73cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model: ''
tags:
- generated_from_trainer
model-index:
- name: glacformer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# glacformer
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0333
- Mean Iou: 0.9528
- Mean Accuracy: 0.9772
- Overall Accuracy: 0.9885
- Per Category Iou: [0.9855230058020051, 0.8845759711828091, 0.9883964861024538]
- Per Category Accuracy: [0.9921669407092866, 0.9462930795421282, 0.9931901963885149]
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------------------------------------------------:|:------------------------------------------------------------:|
| 0.045 | 1.0 | 523 | 0.0421 | 0.9477 | 0.9795 | 0.9869 | [0.9852157890390353, 0.8719898483736556, 0.9857700613925825] | [0.9904340924248899, 0.9587586082053337, 0.9893900149083925] |
| 0.0372 | 2.0 | 1046 | 0.0333 | 0.9528 | 0.9772 | 0.9885 | [0.9855230058020051, 0.8845759711828091, 0.9883964861024538] | [0.9921669407092866, 0.9462930795421282, 0.9931901963885149] |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.14.0.dev20221130+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|