ultima versao
Browse files- create_alloy_model.ipynb +20 -14
- model_tawos_aloy_tfidf_linear.joblib +2 -2
- model_tawos_aloy_tfidf_svr.joblib +2 -2
- models/tawos/aloy/model_tawos_aloy_mbr.joblib +3 -0
- models/tawos/aloy/model_tawos_aloy_median.joblib +3 -0
- models/tawos/aloy/model_tawos_aloy_neosp_linear.joblib +3 -0
- models/tawos/aloy/model_tawos_aloy_neosp_svr.joblib +3 -0
- models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib +3 -0
- models/tawos/aloy/model_tawos_aloy_tfidf_svr.joblib +3 -0
- models/tawos/aloy/vectorizer_tfidf.joblib +3 -0
create_alloy_model.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
@@ -39,7 +39,7 @@
|
|
39 |
},
|
40 |
{
|
41 |
"cell_type": "code",
|
42 |
-
"execution_count":
|
43 |
"metadata": {},
|
44 |
"outputs": [],
|
45 |
"source": [
|
@@ -114,7 +114,7 @@
|
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
-
"execution_count":
|
118 |
"metadata": {},
|
119 |
"outputs": [
|
120 |
{
|
@@ -123,7 +123,7 @@
|
|
123 |
"['models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib']"
|
124 |
]
|
125 |
},
|
126 |
-
"execution_count":
|
127 |
"metadata": {},
|
128 |
"output_type": "execute_result"
|
129 |
}
|
@@ -181,8 +181,8 @@
|
|
181 |
"# Extração das features para o TFIDF\n",
|
182 |
"vectorizer = TfidfVectorizer()\n",
|
183 |
"X_vec = vectorizer.fit_transform(df[\"context_\"])\n",
|
184 |
-
"\n",
|
185 |
-
"dump(vectorizer, \"models/tawos/aloy/vectorizer_tfidf.joblib\")\n",
|
186 |
"\n",
|
187 |
"df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())\n",
|
188 |
"\n",
|
@@ -194,37 +194,43 @@
|
|
194 |
"\n",
|
195 |
"model = DummyRegressor(strategy=\"mean\")\n",
|
196 |
"model.fit(X, y)\n",
|
197 |
-
"dump(model, \"
|
|
|
198 |
"\n",
|
199 |
"############ Mediana\n",
|
200 |
"\n",
|
201 |
"model = DummyRegressor(strategy=\"median\")\n",
|
202 |
"model.fit(X, y)\n",
|
203 |
-
"dump(model, \"
|
|
|
204 |
"\n",
|
205 |
"########### NEOSP-SVR\n",
|
206 |
"\n",
|
207 |
"model = svm.SVR()\n",
|
208 |
"model.fit(X[X.columns[5:16]], y)\n",
|
209 |
-
"dump(model, \"
|
|
|
210 |
"\n",
|
211 |
"########### NEOSP-LR\n",
|
212 |
"\n",
|
213 |
"model = LinearRegression()\n",
|
214 |
"model.fit(X[X.columns[5:16]], y)\n",
|
215 |
-
"dump(model, \"
|
|
|
216 |
"\n",
|
217 |
"############ TFIDF-SVM\n",
|
218 |
"\n",
|
219 |
"model = svm.SVR()\n",
|
220 |
-
"model.fit(X[X.columns[
|
221 |
-
"dump(model, \"
|
|
|
222 |
"\n",
|
223 |
"############ TFIDF-LR\n",
|
224 |
"\n",
|
225 |
"model = LinearRegression()\n",
|
226 |
-
"model.fit(X[X.columns[
|
227 |
-
"dump(model, \"
|
|
|
228 |
]
|
229 |
},
|
230 |
{
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 15,
|
6 |
"metadata": {},
|
7 |
"outputs": [
|
8 |
{
|
|
|
39 |
},
|
40 |
{
|
41 |
"cell_type": "code",
|
42 |
+
"execution_count": 16,
|
43 |
"metadata": {},
|
44 |
"outputs": [],
|
45 |
"source": [
|
|
|
114 |
},
|
115 |
{
|
116 |
"cell_type": "code",
|
117 |
+
"execution_count": 17,
|
118 |
"metadata": {},
|
119 |
"outputs": [
|
120 |
{
|
|
|
123 |
"['models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib']"
|
124 |
]
|
125 |
},
|
126 |
+
"execution_count": 17,
|
127 |
"metadata": {},
|
128 |
"output_type": "execute_result"
|
129 |
}
|
|
|
181 |
"# Extração das features para o TFIDF\n",
|
182 |
"vectorizer = TfidfVectorizer()\n",
|
183 |
"X_vec = vectorizer.fit_transform(df[\"context_\"])\n",
|
184 |
+
"dump(vectorizer, \"vectorizer_tfidf.joblib\")\n",
|
185 |
+
"#dump(vectorizer, \"models/tawos/aloy/vectorizer_tfidf.joblib\")\n",
|
186 |
"\n",
|
187 |
"df_vec = pd.DataFrame(data = X_vec.toarray(), columns = vectorizer.get_feature_names_out())\n",
|
188 |
"\n",
|
|
|
194 |
"\n",
|
195 |
"model = DummyRegressor(strategy=\"mean\")\n",
|
196 |
"model.fit(X, y)\n",
|
197 |
+
"dump(model, \"model_tawos_aloy_mbr.joblib\")\n",
|
198 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_mbr.joblib\")\n",
|
199 |
"\n",
|
200 |
"############ Mediana\n",
|
201 |
"\n",
|
202 |
"model = DummyRegressor(strategy=\"median\")\n",
|
203 |
"model.fit(X, y)\n",
|
204 |
+
"dump(model, \"model_tawos_aloy_median.joblib\")\n",
|
205 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_median.joblib\")\n",
|
206 |
"\n",
|
207 |
"########### NEOSP-SVR\n",
|
208 |
"\n",
|
209 |
"model = svm.SVR()\n",
|
210 |
"model.fit(X[X.columns[5:16]], y)\n",
|
211 |
+
"dump(model, \"model_tawos_aloy_neosp_svr.joblib\")\n",
|
212 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_neosp_svr.joblib\")\n",
|
213 |
"\n",
|
214 |
"########### NEOSP-LR\n",
|
215 |
"\n",
|
216 |
"model = LinearRegression()\n",
|
217 |
"model.fit(X[X.columns[5:16]], y)\n",
|
218 |
+
"dump(model, \"model_tawos_aloy_neosp_linear.joblib\")\n",
|
219 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_neosp_linear.joblib\")\n",
|
220 |
"\n",
|
221 |
"############ TFIDF-SVM\n",
|
222 |
"\n",
|
223 |
"model = svm.SVR()\n",
|
224 |
+
"model.fit(X[X.columns[16:]], y)\n",
|
225 |
+
"dump(model, \"model_tawos_aloy_tfidf_svr.joblib\")\n",
|
226 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_tfidf_svr.joblib\")\n",
|
227 |
"\n",
|
228 |
"############ TFIDF-LR\n",
|
229 |
"\n",
|
230 |
"model = LinearRegression()\n",
|
231 |
+
"model.fit(X[X.columns[16:]], y)\n",
|
232 |
+
"dump(model, \"model_tawos_aloy_tfidf_linear.joblib\")\n",
|
233 |
+
"#dump(model, \"models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib\")\n"
|
234 |
]
|
235 |
},
|
236 |
{
|
model_tawos_aloy_tfidf_linear.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2be1fe5f0b47414af43990af0ebfdd4384b81ba9a477c1504376970a8be7327d
|
3 |
+
size 60112
|
model_tawos_aloy_tfidf_svr.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4953cef15cf2d5ab15031ff2e8fe6222d110dc90a2ce526ce07fd4ce25395c22
|
3 |
+
size 4417500
|
models/tawos/aloy/model_tawos_aloy_mbr.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d883f253e395899015acd3f76b9946b652da8237a0878d3f5fef36a45e9d29fd
|
3 |
+
size 383
|
models/tawos/aloy/model_tawos_aloy_median.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f33655a67e4d587143f615b1604a45fc5cac5b70b0c8e999b47a953a43511e43
|
3 |
+
size 383
|
models/tawos/aloy/model_tawos_aloy_neosp_linear.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87138b5fb3347fcff2f00d7399a45ff95fe35cb9ed354eb6c4a4a846cd4dbb4c
|
3 |
+
size 1280
|
models/tawos/aloy/model_tawos_aloy_neosp_svr.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92be4c2361826da0e5942033a3cb4d86fea92d75c8bf4040590b92914929f081
|
3 |
+
size 24195
|
models/tawos/aloy/model_tawos_aloy_tfidf_linear.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2be1fe5f0b47414af43990af0ebfdd4384b81ba9a477c1504376970a8be7327d
|
3 |
+
size 60112
|
models/tawos/aloy/model_tawos_aloy_tfidf_svr.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4953cef15cf2d5ab15031ff2e8fe6222d110dc90a2ce526ce07fd4ce25395c22
|
3 |
+
size 4417500
|
models/tawos/aloy/vectorizer_tfidf.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d3eac7515bb5f3fb045d49e665f92bae8d26e259c74c4cdf01acded7a2ea410
|
3 |
+
size 68159
|