Add image-segmentation pipeline tag and nnU-Net library name
Browse filesThis PR adds the `image-segmentation` pipeline tag and `nnunet` library name to improve the model card and make the model more discoverable on the Hugging Face Hub.
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
|
|
|
|
3 |
---
|
4 |
|
5 |
You should cite the following paper when using the code in this repository:
|
@@ -7,15 +9,13 @@ You should cite the following paper when using the code in this repository:
|
|
7 |
Van De Vyver, Gilles, et al. "Generative augmentations for improved cardiac ultrasound segmentation using diffusion models." arXiv preprint arXiv:2502.20100 (2025).
|
8 |
https://arxiv.org/abs/2502.20100
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
To use the model, unzip nnUNetTrainer__nnUNetPlans__2d.zip and follow the instuctions in inference_instructions.txt.
|
13 |
For more information on the model, see the documentation of nnU-Net.
|
14 |
|
15 |
-
This nnU-Net model is for cardiac
|
16 |
|
17 |
This model is trained on an augmented version of the CAMUS dataset: S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, et al. "Deep Learning for Segmentation using an Open Large-Scale Dataset in 2D Echocardiography" in IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2198-2210, Sept. 2019. doi: 10.1109/TMI.2019.2900516
|
18 |
|
19 |
-
Code and
|
20 |
|
21 |
This model uses the nnU-Net architecture: Isensee, F., Jaeger, P.F., Kohl, S.A.A. et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
|
|
|
1 |
---
|
2 |
license: cc-by-sa-4.0
|
3 |
+
library_name: nnunet
|
4 |
+
pipeline_tag: image-segmentation
|
5 |
---
|
6 |
|
7 |
You should cite the following paper when using the code in this repository:
|
|
|
9 |
Van De Vyver, Gilles, et al. "Generative augmentations for improved cardiac ultrasound segmentation using diffusion models." arXiv preprint arXiv:2502.20100 (2025).
|
10 |
https://arxiv.org/abs/2502.20100
|
11 |
|
12 |
+
To use the model, unzip `nnUNetTrainer__nnUNetPlans__2d.zip` and follow the instructions in `inference_instructions.txt`.
|
|
|
|
|
13 |
For more information on the model, see the documentation of nnU-Net.
|
14 |
|
15 |
+
This nnU-Net model is for cardiac segmentation on apical two and four chamber views.
|
16 |
|
17 |
This model is trained on an augmented version of the CAMUS dataset: S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, et al. "Deep Learning for Segmentation using an Open Large-Scale Dataset in 2D Echocardiography" in IEEE Transactions on Medical Imaging, vol. 38, no. 9, pp. 2198-2210, Sept. 2019. doi: 10.1109/TMI.2019.2900516
|
18 |
|
19 |
+
Code and information about the augmentations can be found here: https://github.com/GillesVanDeVyver/EchoGAINS
|
20 |
|
21 |
This model uses the nnU-Net architecture: Isensee, F., Jaeger, P.F., Kohl, S.A.A. et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18, 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z
|