Segunda tentativa
Browse files
README.md
CHANGED
@@ -1,199 +1,80 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: cc-by-4.0
|
4 |
+
base_model: eduagarcia/RoBERTaLexPT-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- ulysses_ner_br
|
9 |
+
model-index:
|
10 |
+
- name: robertalex-ptbr-ulyssesner
|
11 |
+
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
# robertalex-ptbr-ulyssesner
|
18 |
|
19 |
+
This model is a fine-tuned version of [eduagarcia/RoBERTaLexPT-base](https://huggingface.co/eduagarcia/RoBERTaLexPT-base) on the ulysses_ner_br dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0711
|
22 |
+
- Data: {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72}
|
23 |
+
- Evento: {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5}
|
24 |
+
- Fundamento: {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107}
|
25 |
+
- Local: {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145}
|
26 |
+
- Organizacao: {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81}
|
27 |
+
- Pessoa: {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114}
|
28 |
+
- Produtodelei: {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46}
|
29 |
+
- Overall Precision: 0.8368
|
30 |
+
- Overall Recall: 0.9088
|
31 |
+
- Overall F1: 0.8713
|
32 |
+
- Overall Accuracy: 0.9860
|
33 |
|
34 |
+
## Model description
|
35 |
|
36 |
+
More information needed
|
37 |
|
38 |
+
## Intended uses & limitations
|
39 |
|
40 |
+
More information needed
|
41 |
|
42 |
+
## Training and evaluation data
|
43 |
|
44 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
## Training procedure
|
47 |
|
48 |
+
### Training hyperparameters
|
49 |
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 5e-05
|
52 |
+
- train_batch_size: 32
|
53 |
+
- eval_batch_size: 32
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 10
|
58 |
|
59 |
+
### Training results
|
60 |
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Data | Evento | Fundamento | Local | Organizacao | Pessoa | Produtodelei | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
62 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
63 |
+
| 0.4776 | 1.0 | 71 | 0.2170 | {'precision': 1.0, 'recall': 0.4166666666666667, 'f1': 0.5882352941176471, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.5714285714285714, 'recall': 0.5607476635514018, 'f1': 0.5660377358490566, 'number': 107} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 145} | {'precision': 0.13445378151260504, 'recall': 0.5925925925925926, 'f1': 0.2191780821917808, 'number': 81} | {'precision': 0.16793893129770993, 'recall': 0.19298245614035087, 'f1': 0.17959183673469387, 'number': 114} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 46} | 0.2528 | 0.2807 | 0.2660 | 0.9344 |
|
64 |
+
| 0.124 | 2.0 | 142 | 0.0854 | {'precision': 0.8666666666666667, 'recall': 0.9027777777777778, 'f1': 0.8843537414965987, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.7165354330708661, 'recall': 0.8504672897196262, 'f1': 0.7777777777777777, 'number': 107} | {'precision': 0.8187919463087249, 'recall': 0.8413793103448276, 'f1': 0.8299319727891157, 'number': 145} | {'precision': 0.6078431372549019, 'recall': 0.7654320987654321, 'f1': 0.6775956284153005, 'number': 81} | {'precision': 0.8303571428571429, 'recall': 0.8157894736842105, 'f1': 0.8230088495575222, 'number': 114} | {'precision': 0.6590909090909091, 'recall': 0.6304347826086957, 'f1': 0.6444444444444444, 'number': 46} | 0.7586 | 0.8105 | 0.7837 | 0.9783 |
|
65 |
+
| 0.0463 | 3.0 | 213 | 0.0699 | {'precision': 0.9210526315789473, 'recall': 0.9722222222222222, 'f1': 0.9459459459459458, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.7404580152671756, 'recall': 0.9065420560747663, 'f1': 0.8151260504201681, 'number': 107} | {'precision': 0.9236111111111112, 'recall': 0.9172413793103448, 'f1': 0.9204152249134949, 'number': 145} | {'precision': 0.7156862745098039, 'recall': 0.9012345679012346, 'f1': 0.7978142076502731, 'number': 81} | {'precision': 0.8048780487804879, 'recall': 0.868421052631579, 'f1': 0.8354430379746836, 'number': 114} | {'precision': 0.6304347826086957, 'recall': 0.6304347826086957, 'f1': 0.6304347826086957, 'number': 46} | 0.8055 | 0.8789 | 0.8406 | 0.9838 |
|
66 |
+
| 0.0277 | 4.0 | 284 | 0.0709 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.8347826086956521, 'recall': 0.897196261682243, 'f1': 0.8648648648648648, 'number': 107} | {'precision': 0.9246575342465754, 'recall': 0.9310344827586207, 'f1': 0.9278350515463917, 'number': 145} | {'precision': 0.7553191489361702, 'recall': 0.8765432098765432, 'f1': 0.8114285714285715, 'number': 81} | {'precision': 0.796875, 'recall': 0.8947368421052632, 'f1': 0.8429752066115702, 'number': 114} | {'precision': 0.6481481481481481, 'recall': 0.7608695652173914, 'f1': 0.7000000000000001, 'number': 46} | 0.8336 | 0.8965 | 0.8639 | 0.9833 |
|
67 |
+
| 0.0165 | 5.0 | 355 | 0.0640 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} | {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} | {'precision': 0.8111111111111111, 'recall': 0.9012345679012346, 'f1': 0.8538011695906432, 'number': 81} | {'precision': 0.7969924812030075, 'recall': 0.9298245614035088, 'f1': 0.8582995951417005, 'number': 114} | {'precision': 0.673469387755102, 'recall': 0.717391304347826, 'f1': 0.6947368421052631, 'number': 46} | 0.8543 | 0.9053 | 0.8790 | 0.9848 |
|
68 |
+
| 0.0087 | 6.0 | 426 | 0.0612 | {'precision': 0.9594594594594594, 'recall': 0.9861111111111112, 'f1': 0.9726027397260274, 'number': 72} | {'precision': 0.5, 'recall': 0.2, 'f1': 0.28571428571428575, 'number': 5} | {'precision': 0.8048780487804879, 'recall': 0.9252336448598131, 'f1': 0.8608695652173913, 'number': 107} | {'precision': 0.9574468085106383, 'recall': 0.9310344827586207, 'f1': 0.9440559440559441, 'number': 145} | {'precision': 0.8131868131868132, 'recall': 0.9135802469135802, 'f1': 0.8604651162790699, 'number': 81} | {'precision': 0.8333333333333334, 'recall': 0.9210526315789473, 'f1': 0.875, 'number': 114} | {'precision': 0.7083333333333334, 'recall': 0.7391304347826086, 'f1': 0.723404255319149, 'number': 46} | 0.8579 | 0.9105 | 0.8834 | 0.9873 |
|
69 |
+
| 0.0057 | 7.0 | 497 | 0.0691 | {'precision': 0.9473684210526315, 'recall': 1.0, 'f1': 0.972972972972973, 'number': 72} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 5} | {'precision': 0.784, 'recall': 0.9158878504672897, 'f1': 0.8448275862068965, 'number': 107} | {'precision': 0.9375, 'recall': 0.9310344827586207, 'f1': 0.9342560553633218, 'number': 145} | {'precision': 0.8202247191011236, 'recall': 0.9012345679012346, 'f1': 0.8588235294117647, 'number': 81} | {'precision': 0.8106060606060606, 'recall': 0.9385964912280702, 'f1': 0.8699186991869918, 'number': 114} | {'precision': 0.5789473684210527, 'recall': 0.717391304347826, 'f1': 0.6407766990291262, 'number': 46} | 0.8317 | 0.9105 | 0.8693 | 0.9866 |
|
70 |
+
| 0.0042 | 8.0 | 568 | 0.0701 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.3333333333333333, 'recall': 0.2, 'f1': 0.25, 'number': 5} | {'precision': 0.8181818181818182, 'recall': 0.9252336448598131, 'f1': 0.868421052631579, 'number': 107} | {'precision': 0.9640287769784173, 'recall': 0.9241379310344827, 'f1': 0.943661971830986, 'number': 145} | {'precision': 0.7634408602150538, 'recall': 0.8765432098765432, 'f1': 0.8160919540229884, 'number': 81} | {'precision': 0.828125, 'recall': 0.9298245614035088, 'f1': 0.8760330578512396, 'number': 114} | {'precision': 0.6538461538461539, 'recall': 0.7391304347826086, 'f1': 0.693877551020408, 'number': 46} | 0.8462 | 0.9070 | 0.8755 | 0.9863 |
|
71 |
+
| 0.0029 | 9.0 | 639 | 0.0713 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} | {'precision': 0.8448275862068966, 'recall': 0.9158878504672897, 'f1': 0.8789237668161435, 'number': 107} | {'precision': 0.9436619718309859, 'recall': 0.9241379310344827, 'f1': 0.9337979094076655, 'number': 145} | {'precision': 0.7708333333333334, 'recall': 0.9135802469135802, 'f1': 0.8361581920903954, 'number': 81} | {'precision': 0.8294573643410853, 'recall': 0.9385964912280702, 'f1': 0.8806584362139916, 'number': 114} | {'precision': 0.6415094339622641, 'recall': 0.7391304347826086, 'f1': 0.6868686868686867, 'number': 46} | 0.8485 | 0.9140 | 0.8801 | 0.9860 |
|
72 |
+
| 0.0025 | 10.0 | 710 | 0.0711 | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 72} | {'precision': 0.6666666666666666, 'recall': 0.4, 'f1': 0.5, 'number': 5} | {'precision': 0.7967479674796748, 'recall': 0.9158878504672897, 'f1': 0.8521739130434782, 'number': 107} | {'precision': 0.950354609929078, 'recall': 0.9241379310344827, 'f1': 0.9370629370629371, 'number': 145} | {'precision': 0.75, 'recall': 0.8888888888888888, 'f1': 0.8135593220338982, 'number': 81} | {'precision': 0.823076923076923, 'recall': 0.9385964912280702, 'f1': 0.8770491803278688, 'number': 114} | {'precision': 0.6470588235294118, 'recall': 0.717391304347826, 'f1': 0.6804123711340206, 'number': 46} | 0.8368 | 0.9088 | 0.8713 | 0.9860 |
|
73 |
|
|
|
74 |
|
75 |
+
### Framework versions
|
76 |
|
77 |
+
- Transformers 4.44.2
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.0.0
|
80 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|