danbev commited on
Commit
01d44b2
·
verified ·
1 Parent(s): b4985cf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2544 -0
README.md ADDED
@@ -0,0 +1,2544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - Sentence Transformers
5
+ - sentence-similarity
6
+ - sentence-transformers
7
+ - llama-cpp
8
+ - gguf-my-repo
9
+ language:
10
+ - en
11
+ license: mit
12
+ base_model: intfloat/e5-small-v2
13
+ model-index:
14
+ - name: e5-small-v2
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ type: mteb/amazon_counterfactual
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 77.59701492537313
27
+ - type: ap
28
+ value: 41.67064885731708
29
+ - type: f1
30
+ value: 71.86465946398573
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ name: MTEB AmazonPolarityClassification
35
+ type: mteb/amazon_polarity
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 91.265875
42
+ - type: ap
43
+ value: 87.67633085349644
44
+ - type: f1
45
+ value: 91.24297521425744
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ type: mteb/amazon_reviews_multi
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 45.882000000000005
57
+ - type: f1
58
+ value: 45.08058870381236
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ name: MTEB ArguAna
63
+ type: arguana
64
+ config: default
65
+ split: test
66
+ revision: None
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 20.697
70
+ - type: map_at_10
71
+ value: 33.975
72
+ - type: map_at_100
73
+ value: 35.223
74
+ - type: map_at_1000
75
+ value: 35.260000000000005
76
+ - type: map_at_3
77
+ value: 29.776999999999997
78
+ - type: map_at_5
79
+ value: 32.035000000000004
80
+ - type: mrr_at_1
81
+ value: 20.982
82
+ - type: mrr_at_10
83
+ value: 34.094
84
+ - type: mrr_at_100
85
+ value: 35.343
86
+ - type: mrr_at_1000
87
+ value: 35.38
88
+ - type: mrr_at_3
89
+ value: 29.884
90
+ - type: mrr_at_5
91
+ value: 32.141999999999996
92
+ - type: ndcg_at_1
93
+ value: 20.697
94
+ - type: ndcg_at_10
95
+ value: 41.668
96
+ - type: ndcg_at_100
97
+ value: 47.397
98
+ - type: ndcg_at_1000
99
+ value: 48.305
100
+ - type: ndcg_at_3
101
+ value: 32.928000000000004
102
+ - type: ndcg_at_5
103
+ value: 36.998999999999995
104
+ - type: precision_at_1
105
+ value: 20.697
106
+ - type: precision_at_10
107
+ value: 6.636
108
+ - type: precision_at_100
109
+ value: 0.924
110
+ - type: precision_at_1000
111
+ value: 0.099
112
+ - type: precision_at_3
113
+ value: 14.035
114
+ - type: precision_at_5
115
+ value: 10.398
116
+ - type: recall_at_1
117
+ value: 20.697
118
+ - type: recall_at_10
119
+ value: 66.35799999999999
120
+ - type: recall_at_100
121
+ value: 92.39
122
+ - type: recall_at_1000
123
+ value: 99.36
124
+ - type: recall_at_3
125
+ value: 42.105
126
+ - type: recall_at_5
127
+ value: 51.991
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ name: MTEB ArxivClusteringP2P
132
+ type: mteb/arxiv-clustering-p2p
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 42.1169517447068
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ name: MTEB ArxivClusteringS2S
143
+ type: mteb/arxiv-clustering-s2s
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 34.79553720107097
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ name: MTEB AskUbuntuDupQuestions
154
+ type: mteb/askubuntudupquestions-reranking
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 58.10811337308168
161
+ - type: mrr
162
+ value: 71.56410763751482
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ name: MTEB BIOSSES
167
+ type: mteb/biosses-sts
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 78.46834918248696
174
+ - type: cos_sim_spearman
175
+ value: 79.4289182755206
176
+ - type: euclidean_pearson
177
+ value: 76.26662973727008
178
+ - type: euclidean_spearman
179
+ value: 78.11744260952536
180
+ - type: manhattan_pearson
181
+ value: 76.08175262609434
182
+ - type: manhattan_spearman
183
+ value: 78.29395265552289
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ name: MTEB Banking77Classification
188
+ type: mteb/banking77
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 81.63636363636364
195
+ - type: f1
196
+ value: 81.55779952376953
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ name: MTEB BiorxivClusteringP2P
201
+ type: mteb/biorxiv-clustering-p2p
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 35.88541137137571
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ name: MTEB BiorxivClusteringS2S
212
+ type: mteb/biorxiv-clustering-s2s
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 30.05205685274407
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ type: BeIR/cqadupstack
224
+ config: default
225
+ split: test
226
+ revision: None
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 30.293999999999997
230
+ - type: map_at_10
231
+ value: 39.876
232
+ - type: map_at_100
233
+ value: 41.315000000000005
234
+ - type: map_at_1000
235
+ value: 41.451
236
+ - type: map_at_3
237
+ value: 37.194
238
+ - type: map_at_5
239
+ value: 38.728
240
+ - type: mrr_at_1
241
+ value: 37.053000000000004
242
+ - type: mrr_at_10
243
+ value: 45.281
244
+ - type: mrr_at_100
245
+ value: 46.188
246
+ - type: mrr_at_1000
247
+ value: 46.245999999999995
248
+ - type: mrr_at_3
249
+ value: 43.228
250
+ - type: mrr_at_5
251
+ value: 44.366
252
+ - type: ndcg_at_1
253
+ value: 37.053000000000004
254
+ - type: ndcg_at_10
255
+ value: 45.086
256
+ - type: ndcg_at_100
257
+ value: 50.756
258
+ - type: ndcg_at_1000
259
+ value: 53.123
260
+ - type: ndcg_at_3
261
+ value: 41.416
262
+ - type: ndcg_at_5
263
+ value: 43.098
264
+ - type: precision_at_1
265
+ value: 37.053000000000004
266
+ - type: precision_at_10
267
+ value: 8.34
268
+ - type: precision_at_100
269
+ value: 1.346
270
+ - type: precision_at_1000
271
+ value: 0.186
272
+ - type: precision_at_3
273
+ value: 19.647000000000002
274
+ - type: precision_at_5
275
+ value: 13.877
276
+ - type: recall_at_1
277
+ value: 30.293999999999997
278
+ - type: recall_at_10
279
+ value: 54.309
280
+ - type: recall_at_100
281
+ value: 78.59
282
+ - type: recall_at_1000
283
+ value: 93.82300000000001
284
+ - type: recall_at_3
285
+ value: 43.168
286
+ - type: recall_at_5
287
+ value: 48.192
288
+ - type: map_at_1
289
+ value: 28.738000000000003
290
+ - type: map_at_10
291
+ value: 36.925999999999995
292
+ - type: map_at_100
293
+ value: 38.017
294
+ - type: map_at_1000
295
+ value: 38.144
296
+ - type: map_at_3
297
+ value: 34.446
298
+ - type: map_at_5
299
+ value: 35.704
300
+ - type: mrr_at_1
301
+ value: 35.478
302
+ - type: mrr_at_10
303
+ value: 42.786
304
+ - type: mrr_at_100
305
+ value: 43.458999999999996
306
+ - type: mrr_at_1000
307
+ value: 43.507
308
+ - type: mrr_at_3
309
+ value: 40.648
310
+ - type: mrr_at_5
311
+ value: 41.804
312
+ - type: ndcg_at_1
313
+ value: 35.478
314
+ - type: ndcg_at_10
315
+ value: 42.044
316
+ - type: ndcg_at_100
317
+ value: 46.249
318
+ - type: ndcg_at_1000
319
+ value: 48.44
320
+ - type: ndcg_at_3
321
+ value: 38.314
322
+ - type: ndcg_at_5
323
+ value: 39.798
324
+ - type: precision_at_1
325
+ value: 35.478
326
+ - type: precision_at_10
327
+ value: 7.764
328
+ - type: precision_at_100
329
+ value: 1.253
330
+ - type: precision_at_1000
331
+ value: 0.174
332
+ - type: precision_at_3
333
+ value: 18.047
334
+ - type: precision_at_5
335
+ value: 12.637
336
+ - type: recall_at_1
337
+ value: 28.738000000000003
338
+ - type: recall_at_10
339
+ value: 50.659
340
+ - type: recall_at_100
341
+ value: 68.76299999999999
342
+ - type: recall_at_1000
343
+ value: 82.811
344
+ - type: recall_at_3
345
+ value: 39.536
346
+ - type: recall_at_5
347
+ value: 43.763999999999996
348
+ - type: map_at_1
349
+ value: 38.565
350
+ - type: map_at_10
351
+ value: 50.168
352
+ - type: map_at_100
353
+ value: 51.11
354
+ - type: map_at_1000
355
+ value: 51.173
356
+ - type: map_at_3
357
+ value: 47.044000000000004
358
+ - type: map_at_5
359
+ value: 48.838
360
+ - type: mrr_at_1
361
+ value: 44.201
362
+ - type: mrr_at_10
363
+ value: 53.596999999999994
364
+ - type: mrr_at_100
365
+ value: 54.211
366
+ - type: mrr_at_1000
367
+ value: 54.247
368
+ - type: mrr_at_3
369
+ value: 51.202000000000005
370
+ - type: mrr_at_5
371
+ value: 52.608999999999995
372
+ - type: ndcg_at_1
373
+ value: 44.201
374
+ - type: ndcg_at_10
375
+ value: 55.694
376
+ - type: ndcg_at_100
377
+ value: 59.518
378
+ - type: ndcg_at_1000
379
+ value: 60.907
380
+ - type: ndcg_at_3
381
+ value: 50.395999999999994
382
+ - type: ndcg_at_5
383
+ value: 53.022999999999996
384
+ - type: precision_at_1
385
+ value: 44.201
386
+ - type: precision_at_10
387
+ value: 8.84
388
+ - type: precision_at_100
389
+ value: 1.162
390
+ - type: precision_at_1000
391
+ value: 0.133
392
+ - type: precision_at_3
393
+ value: 22.153
394
+ - type: precision_at_5
395
+ value: 15.260000000000002
396
+ - type: recall_at_1
397
+ value: 38.565
398
+ - type: recall_at_10
399
+ value: 68.65
400
+ - type: recall_at_100
401
+ value: 85.37400000000001
402
+ - type: recall_at_1000
403
+ value: 95.37400000000001
404
+ - type: recall_at_3
405
+ value: 54.645999999999994
406
+ - type: recall_at_5
407
+ value: 60.958
408
+ - type: map_at_1
409
+ value: 23.945
410
+ - type: map_at_10
411
+ value: 30.641000000000002
412
+ - type: map_at_100
413
+ value: 31.599
414
+ - type: map_at_1000
415
+ value: 31.691000000000003
416
+ - type: map_at_3
417
+ value: 28.405
418
+ - type: map_at_5
419
+ value: 29.704000000000004
420
+ - type: mrr_at_1
421
+ value: 25.537
422
+ - type: mrr_at_10
423
+ value: 32.22
424
+ - type: mrr_at_100
425
+ value: 33.138
426
+ - type: mrr_at_1000
427
+ value: 33.214
428
+ - type: mrr_at_3
429
+ value: 30.151
430
+ - type: mrr_at_5
431
+ value: 31.298
432
+ - type: ndcg_at_1
433
+ value: 25.537
434
+ - type: ndcg_at_10
435
+ value: 34.638000000000005
436
+ - type: ndcg_at_100
437
+ value: 39.486
438
+ - type: ndcg_at_1000
439
+ value: 41.936
440
+ - type: ndcg_at_3
441
+ value: 30.333
442
+ - type: ndcg_at_5
443
+ value: 32.482
444
+ - type: precision_at_1
445
+ value: 25.537
446
+ - type: precision_at_10
447
+ value: 5.153
448
+ - type: precision_at_100
449
+ value: 0.7929999999999999
450
+ - type: precision_at_1000
451
+ value: 0.104
452
+ - type: precision_at_3
453
+ value: 12.429
454
+ - type: precision_at_5
455
+ value: 8.723
456
+ - type: recall_at_1
457
+ value: 23.945
458
+ - type: recall_at_10
459
+ value: 45.412
460
+ - type: recall_at_100
461
+ value: 67.836
462
+ - type: recall_at_1000
463
+ value: 86.467
464
+ - type: recall_at_3
465
+ value: 34.031
466
+ - type: recall_at_5
467
+ value: 39.039
468
+ - type: map_at_1
469
+ value: 14.419
470
+ - type: map_at_10
471
+ value: 20.858999999999998
472
+ - type: map_at_100
473
+ value: 22.067999999999998
474
+ - type: map_at_1000
475
+ value: 22.192
476
+ - type: map_at_3
477
+ value: 18.673000000000002
478
+ - type: map_at_5
479
+ value: 19.968
480
+ - type: mrr_at_1
481
+ value: 17.785999999999998
482
+ - type: mrr_at_10
483
+ value: 24.878
484
+ - type: mrr_at_100
485
+ value: 26.021
486
+ - type: mrr_at_1000
487
+ value: 26.095000000000002
488
+ - type: mrr_at_3
489
+ value: 22.616
490
+ - type: mrr_at_5
491
+ value: 23.785
492
+ - type: ndcg_at_1
493
+ value: 17.785999999999998
494
+ - type: ndcg_at_10
495
+ value: 25.153
496
+ - type: ndcg_at_100
497
+ value: 31.05
498
+ - type: ndcg_at_1000
499
+ value: 34.052
500
+ - type: ndcg_at_3
501
+ value: 21.117
502
+ - type: ndcg_at_5
503
+ value: 23.048
504
+ - type: precision_at_1
505
+ value: 17.785999999999998
506
+ - type: precision_at_10
507
+ value: 4.590000000000001
508
+ - type: precision_at_100
509
+ value: 0.864
510
+ - type: precision_at_1000
511
+ value: 0.125
512
+ - type: precision_at_3
513
+ value: 9.908999999999999
514
+ - type: precision_at_5
515
+ value: 7.313
516
+ - type: recall_at_1
517
+ value: 14.419
518
+ - type: recall_at_10
519
+ value: 34.477999999999994
520
+ - type: recall_at_100
521
+ value: 60.02499999999999
522
+ - type: recall_at_1000
523
+ value: 81.646
524
+ - type: recall_at_3
525
+ value: 23.515
526
+ - type: recall_at_5
527
+ value: 28.266999999999996
528
+ - type: map_at_1
529
+ value: 26.268
530
+ - type: map_at_10
531
+ value: 35.114000000000004
532
+ - type: map_at_100
533
+ value: 36.212
534
+ - type: map_at_1000
535
+ value: 36.333
536
+ - type: map_at_3
537
+ value: 32.436
538
+ - type: map_at_5
539
+ value: 33.992
540
+ - type: mrr_at_1
541
+ value: 31.761
542
+ - type: mrr_at_10
543
+ value: 40.355999999999995
544
+ - type: mrr_at_100
545
+ value: 41.125
546
+ - type: mrr_at_1000
547
+ value: 41.186
548
+ - type: mrr_at_3
549
+ value: 37.937
550
+ - type: mrr_at_5
551
+ value: 39.463
552
+ - type: ndcg_at_1
553
+ value: 31.761
554
+ - type: ndcg_at_10
555
+ value: 40.422000000000004
556
+ - type: ndcg_at_100
557
+ value: 45.458999999999996
558
+ - type: ndcg_at_1000
559
+ value: 47.951
560
+ - type: ndcg_at_3
561
+ value: 35.972
562
+ - type: ndcg_at_5
563
+ value: 38.272
564
+ - type: precision_at_1
565
+ value: 31.761
566
+ - type: precision_at_10
567
+ value: 7.103
568
+ - type: precision_at_100
569
+ value: 1.133
570
+ - type: precision_at_1000
571
+ value: 0.152
572
+ - type: precision_at_3
573
+ value: 16.779
574
+ - type: precision_at_5
575
+ value: 11.877
576
+ - type: recall_at_1
577
+ value: 26.268
578
+ - type: recall_at_10
579
+ value: 51.053000000000004
580
+ - type: recall_at_100
581
+ value: 72.702
582
+ - type: recall_at_1000
583
+ value: 89.521
584
+ - type: recall_at_3
585
+ value: 38.619
586
+ - type: recall_at_5
587
+ value: 44.671
588
+ - type: map_at_1
589
+ value: 25.230999999999998
590
+ - type: map_at_10
591
+ value: 34.227000000000004
592
+ - type: map_at_100
593
+ value: 35.370000000000005
594
+ - type: map_at_1000
595
+ value: 35.488
596
+ - type: map_at_3
597
+ value: 31.496000000000002
598
+ - type: map_at_5
599
+ value: 33.034
600
+ - type: mrr_at_1
601
+ value: 30.822
602
+ - type: mrr_at_10
603
+ value: 39.045
604
+ - type: mrr_at_100
605
+ value: 39.809
606
+ - type: mrr_at_1000
607
+ value: 39.873
608
+ - type: mrr_at_3
609
+ value: 36.663000000000004
610
+ - type: mrr_at_5
611
+ value: 37.964
612
+ - type: ndcg_at_1
613
+ value: 30.822
614
+ - type: ndcg_at_10
615
+ value: 39.472
616
+ - type: ndcg_at_100
617
+ value: 44.574999999999996
618
+ - type: ndcg_at_1000
619
+ value: 47.162
620
+ - type: ndcg_at_3
621
+ value: 34.929
622
+ - type: ndcg_at_5
623
+ value: 37.002
624
+ - type: precision_at_1
625
+ value: 30.822
626
+ - type: precision_at_10
627
+ value: 7.055
628
+ - type: precision_at_100
629
+ value: 1.124
630
+ - type: precision_at_1000
631
+ value: 0.152
632
+ - type: precision_at_3
633
+ value: 16.591
634
+ - type: precision_at_5
635
+ value: 11.667
636
+ - type: recall_at_1
637
+ value: 25.230999999999998
638
+ - type: recall_at_10
639
+ value: 50.42100000000001
640
+ - type: recall_at_100
641
+ value: 72.685
642
+ - type: recall_at_1000
643
+ value: 90.469
644
+ - type: recall_at_3
645
+ value: 37.503
646
+ - type: recall_at_5
647
+ value: 43.123
648
+ - type: map_at_1
649
+ value: 24.604166666666664
650
+ - type: map_at_10
651
+ value: 32.427166666666665
652
+ - type: map_at_100
653
+ value: 33.51474999999999
654
+ - type: map_at_1000
655
+ value: 33.6345
656
+ - type: map_at_3
657
+ value: 30.02366666666667
658
+ - type: map_at_5
659
+ value: 31.382333333333328
660
+ - type: mrr_at_1
661
+ value: 29.001166666666666
662
+ - type: mrr_at_10
663
+ value: 36.3315
664
+ - type: mrr_at_100
665
+ value: 37.16683333333333
666
+ - type: mrr_at_1000
667
+ value: 37.23341666666668
668
+ - type: mrr_at_3
669
+ value: 34.19916666666667
670
+ - type: mrr_at_5
671
+ value: 35.40458333333334
672
+ - type: ndcg_at_1
673
+ value: 29.001166666666666
674
+ - type: ndcg_at_10
675
+ value: 37.06883333333334
676
+ - type: ndcg_at_100
677
+ value: 41.95816666666666
678
+ - type: ndcg_at_1000
679
+ value: 44.501583333333336
680
+ - type: ndcg_at_3
681
+ value: 32.973499999999994
682
+ - type: ndcg_at_5
683
+ value: 34.90833333333334
684
+ - type: precision_at_1
685
+ value: 29.001166666666666
686
+ - type: precision_at_10
687
+ value: 6.336
688
+ - type: precision_at_100
689
+ value: 1.0282499999999999
690
+ - type: precision_at_1000
691
+ value: 0.14391666666666664
692
+ - type: precision_at_3
693
+ value: 14.932499999999996
694
+ - type: precision_at_5
695
+ value: 10.50825
696
+ - type: recall_at_1
697
+ value: 24.604166666666664
698
+ - type: recall_at_10
699
+ value: 46.9525
700
+ - type: recall_at_100
701
+ value: 68.67816666666667
702
+ - type: recall_at_1000
703
+ value: 86.59783333333334
704
+ - type: recall_at_3
705
+ value: 35.49783333333333
706
+ - type: recall_at_5
707
+ value: 40.52525000000001
708
+ - type: map_at_1
709
+ value: 23.559
710
+ - type: map_at_10
711
+ value: 29.023
712
+ - type: map_at_100
713
+ value: 29.818
714
+ - type: map_at_1000
715
+ value: 29.909000000000002
716
+ - type: map_at_3
717
+ value: 27.037
718
+ - type: map_at_5
719
+ value: 28.225
720
+ - type: mrr_at_1
721
+ value: 26.994
722
+ - type: mrr_at_10
723
+ value: 31.962000000000003
724
+ - type: mrr_at_100
725
+ value: 32.726
726
+ - type: mrr_at_1000
727
+ value: 32.800000000000004
728
+ - type: mrr_at_3
729
+ value: 30.266
730
+ - type: mrr_at_5
731
+ value: 31.208999999999996
732
+ - type: ndcg_at_1
733
+ value: 26.994
734
+ - type: ndcg_at_10
735
+ value: 32.53
736
+ - type: ndcg_at_100
737
+ value: 36.758
738
+ - type: ndcg_at_1000
739
+ value: 39.362
740
+ - type: ndcg_at_3
741
+ value: 28.985
742
+ - type: ndcg_at_5
743
+ value: 30.757
744
+ - type: precision_at_1
745
+ value: 26.994
746
+ - type: precision_at_10
747
+ value: 4.968999999999999
748
+ - type: precision_at_100
749
+ value: 0.759
750
+ - type: precision_at_1000
751
+ value: 0.106
752
+ - type: precision_at_3
753
+ value: 12.219
754
+ - type: precision_at_5
755
+ value: 8.527999999999999
756
+ - type: recall_at_1
757
+ value: 23.559
758
+ - type: recall_at_10
759
+ value: 40.585
760
+ - type: recall_at_100
761
+ value: 60.306000000000004
762
+ - type: recall_at_1000
763
+ value: 80.11
764
+ - type: recall_at_3
765
+ value: 30.794
766
+ - type: recall_at_5
767
+ value: 35.186
768
+ - type: map_at_1
769
+ value: 16.384999999999998
770
+ - type: map_at_10
771
+ value: 22.142
772
+ - type: map_at_100
773
+ value: 23.057
774
+ - type: map_at_1000
775
+ value: 23.177
776
+ - type: map_at_3
777
+ value: 20.29
778
+ - type: map_at_5
779
+ value: 21.332
780
+ - type: mrr_at_1
781
+ value: 19.89
782
+ - type: mrr_at_10
783
+ value: 25.771
784
+ - type: mrr_at_100
785
+ value: 26.599
786
+ - type: mrr_at_1000
787
+ value: 26.680999999999997
788
+ - type: mrr_at_3
789
+ value: 23.962
790
+ - type: mrr_at_5
791
+ value: 24.934
792
+ - type: ndcg_at_1
793
+ value: 19.89
794
+ - type: ndcg_at_10
795
+ value: 25.97
796
+ - type: ndcg_at_100
797
+ value: 30.605
798
+ - type: ndcg_at_1000
799
+ value: 33.619
800
+ - type: ndcg_at_3
801
+ value: 22.704
802
+ - type: ndcg_at_5
803
+ value: 24.199
804
+ - type: precision_at_1
805
+ value: 19.89
806
+ - type: precision_at_10
807
+ value: 4.553
808
+ - type: precision_at_100
809
+ value: 0.8049999999999999
810
+ - type: precision_at_1000
811
+ value: 0.122
812
+ - type: precision_at_3
813
+ value: 10.541
814
+ - type: precision_at_5
815
+ value: 7.46
816
+ - type: recall_at_1
817
+ value: 16.384999999999998
818
+ - type: recall_at_10
819
+ value: 34.001
820
+ - type: recall_at_100
821
+ value: 55.17100000000001
822
+ - type: recall_at_1000
823
+ value: 77.125
824
+ - type: recall_at_3
825
+ value: 24.618000000000002
826
+ - type: recall_at_5
827
+ value: 28.695999999999998
828
+ - type: map_at_1
829
+ value: 23.726
830
+ - type: map_at_10
831
+ value: 31.227
832
+ - type: map_at_100
833
+ value: 32.311
834
+ - type: map_at_1000
835
+ value: 32.419
836
+ - type: map_at_3
837
+ value: 28.765
838
+ - type: map_at_5
839
+ value: 30.229
840
+ - type: mrr_at_1
841
+ value: 27.705000000000002
842
+ - type: mrr_at_10
843
+ value: 35.085
844
+ - type: mrr_at_100
845
+ value: 35.931000000000004
846
+ - type: mrr_at_1000
847
+ value: 36
848
+ - type: mrr_at_3
849
+ value: 32.603
850
+ - type: mrr_at_5
851
+ value: 34.117999999999995
852
+ - type: ndcg_at_1
853
+ value: 27.705000000000002
854
+ - type: ndcg_at_10
855
+ value: 35.968
856
+ - type: ndcg_at_100
857
+ value: 41.197
858
+ - type: ndcg_at_1000
859
+ value: 43.76
860
+ - type: ndcg_at_3
861
+ value: 31.304
862
+ - type: ndcg_at_5
863
+ value: 33.661
864
+ - type: precision_at_1
865
+ value: 27.705000000000002
866
+ - type: precision_at_10
867
+ value: 5.942
868
+ - type: precision_at_100
869
+ value: 0.964
870
+ - type: precision_at_1000
871
+ value: 0.13
872
+ - type: precision_at_3
873
+ value: 13.868
874
+ - type: precision_at_5
875
+ value: 9.944
876
+ - type: recall_at_1
877
+ value: 23.726
878
+ - type: recall_at_10
879
+ value: 46.786
880
+ - type: recall_at_100
881
+ value: 70.072
882
+ - type: recall_at_1000
883
+ value: 88.2
884
+ - type: recall_at_3
885
+ value: 33.981
886
+ - type: recall_at_5
887
+ value: 39.893
888
+ - type: map_at_1
889
+ value: 23.344
890
+ - type: map_at_10
891
+ value: 31.636999999999997
892
+ - type: map_at_100
893
+ value: 33.065
894
+ - type: map_at_1000
895
+ value: 33.300000000000004
896
+ - type: map_at_3
897
+ value: 29.351
898
+ - type: map_at_5
899
+ value: 30.432
900
+ - type: mrr_at_1
901
+ value: 27.866000000000003
902
+ - type: mrr_at_10
903
+ value: 35.587
904
+ - type: mrr_at_100
905
+ value: 36.52
906
+ - type: mrr_at_1000
907
+ value: 36.597
908
+ - type: mrr_at_3
909
+ value: 33.696
910
+ - type: mrr_at_5
911
+ value: 34.713
912
+ - type: ndcg_at_1
913
+ value: 27.866000000000003
914
+ - type: ndcg_at_10
915
+ value: 36.61
916
+ - type: ndcg_at_100
917
+ value: 41.88
918
+ - type: ndcg_at_1000
919
+ value: 45.105000000000004
920
+ - type: ndcg_at_3
921
+ value: 33.038000000000004
922
+ - type: ndcg_at_5
923
+ value: 34.331
924
+ - type: precision_at_1
925
+ value: 27.866000000000003
926
+ - type: precision_at_10
927
+ value: 6.917
928
+ - type: precision_at_100
929
+ value: 1.3599999999999999
930
+ - type: precision_at_1000
931
+ value: 0.233
932
+ - type: precision_at_3
933
+ value: 15.547
934
+ - type: precision_at_5
935
+ value: 10.791
936
+ - type: recall_at_1
937
+ value: 23.344
938
+ - type: recall_at_10
939
+ value: 45.782000000000004
940
+ - type: recall_at_100
941
+ value: 69.503
942
+ - type: recall_at_1000
943
+ value: 90.742
944
+ - type: recall_at_3
945
+ value: 35.160000000000004
946
+ - type: recall_at_5
947
+ value: 39.058
948
+ - type: map_at_1
949
+ value: 20.776
950
+ - type: map_at_10
951
+ value: 27.285999999999998
952
+ - type: map_at_100
953
+ value: 28.235
954
+ - type: map_at_1000
955
+ value: 28.337
956
+ - type: map_at_3
957
+ value: 25.147000000000002
958
+ - type: map_at_5
959
+ value: 26.401999999999997
960
+ - type: mrr_at_1
961
+ value: 22.921
962
+ - type: mrr_at_10
963
+ value: 29.409999999999997
964
+ - type: mrr_at_100
965
+ value: 30.275000000000002
966
+ - type: mrr_at_1000
967
+ value: 30.354999999999997
968
+ - type: mrr_at_3
969
+ value: 27.418
970
+ - type: mrr_at_5
971
+ value: 28.592000000000002
972
+ - type: ndcg_at_1
973
+ value: 22.921
974
+ - type: ndcg_at_10
975
+ value: 31.239
976
+ - type: ndcg_at_100
977
+ value: 35.965
978
+ - type: ndcg_at_1000
979
+ value: 38.602
980
+ - type: ndcg_at_3
981
+ value: 27.174
982
+ - type: ndcg_at_5
983
+ value: 29.229
984
+ - type: precision_at_1
985
+ value: 22.921
986
+ - type: precision_at_10
987
+ value: 4.806
988
+ - type: precision_at_100
989
+ value: 0.776
990
+ - type: precision_at_1000
991
+ value: 0.11
992
+ - type: precision_at_3
993
+ value: 11.459999999999999
994
+ - type: precision_at_5
995
+ value: 8.022
996
+ - type: recall_at_1
997
+ value: 20.776
998
+ - type: recall_at_10
999
+ value: 41.294
1000
+ - type: recall_at_100
1001
+ value: 63.111
1002
+ - type: recall_at_1000
1003
+ value: 82.88600000000001
1004
+ - type: recall_at_3
1005
+ value: 30.403000000000002
1006
+ - type: recall_at_5
1007
+ value: 35.455999999999996
1008
+ - task:
1009
+ type: Retrieval
1010
+ dataset:
1011
+ name: MTEB ClimateFEVER
1012
+ type: climate-fever
1013
+ config: default
1014
+ split: test
1015
+ revision: None
1016
+ metrics:
1017
+ - type: map_at_1
1018
+ value: 9.376
1019
+ - type: map_at_10
1020
+ value: 15.926000000000002
1021
+ - type: map_at_100
1022
+ value: 17.585
1023
+ - type: map_at_1000
1024
+ value: 17.776
1025
+ - type: map_at_3
1026
+ value: 13.014000000000001
1027
+ - type: map_at_5
1028
+ value: 14.417
1029
+ - type: mrr_at_1
1030
+ value: 20.195
1031
+ - type: mrr_at_10
1032
+ value: 29.95
1033
+ - type: mrr_at_100
1034
+ value: 31.052000000000003
1035
+ - type: mrr_at_1000
1036
+ value: 31.108000000000004
1037
+ - type: mrr_at_3
1038
+ value: 26.667
1039
+ - type: mrr_at_5
1040
+ value: 28.458
1041
+ - type: ndcg_at_1
1042
+ value: 20.195
1043
+ - type: ndcg_at_10
1044
+ value: 22.871
1045
+ - type: ndcg_at_100
1046
+ value: 29.921999999999997
1047
+ - type: ndcg_at_1000
1048
+ value: 33.672999999999995
1049
+ - type: ndcg_at_3
1050
+ value: 17.782999999999998
1051
+ - type: ndcg_at_5
1052
+ value: 19.544
1053
+ - type: precision_at_1
1054
+ value: 20.195
1055
+ - type: precision_at_10
1056
+ value: 7.394
1057
+ - type: precision_at_100
1058
+ value: 1.493
1059
+ - type: precision_at_1000
1060
+ value: 0.218
1061
+ - type: precision_at_3
1062
+ value: 13.073
1063
+ - type: precision_at_5
1064
+ value: 10.436
1065
+ - type: recall_at_1
1066
+ value: 9.376
1067
+ - type: recall_at_10
1068
+ value: 28.544999999999998
1069
+ - type: recall_at_100
1070
+ value: 53.147999999999996
1071
+ - type: recall_at_1000
1072
+ value: 74.62
1073
+ - type: recall_at_3
1074
+ value: 16.464000000000002
1075
+ - type: recall_at_5
1076
+ value: 21.004
1077
+ - task:
1078
+ type: Retrieval
1079
+ dataset:
1080
+ name: MTEB DBPedia
1081
+ type: dbpedia-entity
1082
+ config: default
1083
+ split: test
1084
+ revision: None
1085
+ metrics:
1086
+ - type: map_at_1
1087
+ value: 8.415000000000001
1088
+ - type: map_at_10
1089
+ value: 18.738
1090
+ - type: map_at_100
1091
+ value: 27.291999999999998
1092
+ - type: map_at_1000
1093
+ value: 28.992
1094
+ - type: map_at_3
1095
+ value: 13.196
1096
+ - type: map_at_5
1097
+ value: 15.539
1098
+ - type: mrr_at_1
1099
+ value: 66.5
1100
+ - type: mrr_at_10
1101
+ value: 74.518
1102
+ - type: mrr_at_100
1103
+ value: 74.86
1104
+ - type: mrr_at_1000
1105
+ value: 74.87
1106
+ - type: mrr_at_3
1107
+ value: 72.375
1108
+ - type: mrr_at_5
1109
+ value: 73.86200000000001
1110
+ - type: ndcg_at_1
1111
+ value: 54.37499999999999
1112
+ - type: ndcg_at_10
1113
+ value: 41.317
1114
+ - type: ndcg_at_100
1115
+ value: 45.845
1116
+ - type: ndcg_at_1000
1117
+ value: 52.92
1118
+ - type: ndcg_at_3
1119
+ value: 44.983000000000004
1120
+ - type: ndcg_at_5
1121
+ value: 42.989
1122
+ - type: precision_at_1
1123
+ value: 66.5
1124
+ - type: precision_at_10
1125
+ value: 33.6
1126
+ - type: precision_at_100
1127
+ value: 10.972999999999999
1128
+ - type: precision_at_1000
1129
+ value: 2.214
1130
+ - type: precision_at_3
1131
+ value: 48.583
1132
+ - type: precision_at_5
1133
+ value: 42.15
1134
+ - type: recall_at_1
1135
+ value: 8.415000000000001
1136
+ - type: recall_at_10
1137
+ value: 24.953
1138
+ - type: recall_at_100
1139
+ value: 52.48199999999999
1140
+ - type: recall_at_1000
1141
+ value: 75.093
1142
+ - type: recall_at_3
1143
+ value: 14.341000000000001
1144
+ - type: recall_at_5
1145
+ value: 18.468
1146
+ - task:
1147
+ type: Classification
1148
+ dataset:
1149
+ name: MTEB EmotionClassification
1150
+ type: mteb/emotion
1151
+ config: default
1152
+ split: test
1153
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1154
+ metrics:
1155
+ - type: accuracy
1156
+ value: 47.06499999999999
1157
+ - type: f1
1158
+ value: 41.439327599975385
1159
+ - task:
1160
+ type: Retrieval
1161
+ dataset:
1162
+ name: MTEB FEVER
1163
+ type: fever
1164
+ config: default
1165
+ split: test
1166
+ revision: None
1167
+ metrics:
1168
+ - type: map_at_1
1169
+ value: 66.02
1170
+ - type: map_at_10
1171
+ value: 76.68599999999999
1172
+ - type: map_at_100
1173
+ value: 76.959
1174
+ - type: map_at_1000
1175
+ value: 76.972
1176
+ - type: map_at_3
1177
+ value: 75.024
1178
+ - type: map_at_5
1179
+ value: 76.153
1180
+ - type: mrr_at_1
1181
+ value: 71.197
1182
+ - type: mrr_at_10
1183
+ value: 81.105
1184
+ - type: mrr_at_100
1185
+ value: 81.232
1186
+ - type: mrr_at_1000
1187
+ value: 81.233
1188
+ - type: mrr_at_3
1189
+ value: 79.758
1190
+ - type: mrr_at_5
1191
+ value: 80.69
1192
+ - type: ndcg_at_1
1193
+ value: 71.197
1194
+ - type: ndcg_at_10
1195
+ value: 81.644
1196
+ - type: ndcg_at_100
1197
+ value: 82.645
1198
+ - type: ndcg_at_1000
1199
+ value: 82.879
1200
+ - type: ndcg_at_3
1201
+ value: 78.792
1202
+ - type: ndcg_at_5
1203
+ value: 80.528
1204
+ - type: precision_at_1
1205
+ value: 71.197
1206
+ - type: precision_at_10
1207
+ value: 10.206999999999999
1208
+ - type: precision_at_100
1209
+ value: 1.093
1210
+ - type: precision_at_1000
1211
+ value: 0.11299999999999999
1212
+ - type: precision_at_3
1213
+ value: 30.868000000000002
1214
+ - type: precision_at_5
1215
+ value: 19.559
1216
+ - type: recall_at_1
1217
+ value: 66.02
1218
+ - type: recall_at_10
1219
+ value: 92.50699999999999
1220
+ - type: recall_at_100
1221
+ value: 96.497
1222
+ - type: recall_at_1000
1223
+ value: 97.956
1224
+ - type: recall_at_3
1225
+ value: 84.866
1226
+ - type: recall_at_5
1227
+ value: 89.16199999999999
1228
+ - task:
1229
+ type: Retrieval
1230
+ dataset:
1231
+ name: MTEB FiQA2018
1232
+ type: fiqa
1233
+ config: default
1234
+ split: test
1235
+ revision: None
1236
+ metrics:
1237
+ - type: map_at_1
1238
+ value: 17.948
1239
+ - type: map_at_10
1240
+ value: 29.833
1241
+ - type: map_at_100
1242
+ value: 31.487
1243
+ - type: map_at_1000
1244
+ value: 31.674000000000003
1245
+ - type: map_at_3
1246
+ value: 26.029999999999998
1247
+ - type: map_at_5
1248
+ value: 28.038999999999998
1249
+ - type: mrr_at_1
1250
+ value: 34.721999999999994
1251
+ - type: mrr_at_10
1252
+ value: 44.214999999999996
1253
+ - type: mrr_at_100
1254
+ value: 44.994
1255
+ - type: mrr_at_1000
1256
+ value: 45.051
1257
+ - type: mrr_at_3
1258
+ value: 41.667
1259
+ - type: mrr_at_5
1260
+ value: 43.032
1261
+ - type: ndcg_at_1
1262
+ value: 34.721999999999994
1263
+ - type: ndcg_at_10
1264
+ value: 37.434
1265
+ - type: ndcg_at_100
1266
+ value: 43.702000000000005
1267
+ - type: ndcg_at_1000
1268
+ value: 46.993
1269
+ - type: ndcg_at_3
1270
+ value: 33.56
1271
+ - type: ndcg_at_5
1272
+ value: 34.687
1273
+ - type: precision_at_1
1274
+ value: 34.721999999999994
1275
+ - type: precision_at_10
1276
+ value: 10.401
1277
+ - type: precision_at_100
1278
+ value: 1.7049999999999998
1279
+ - type: precision_at_1000
1280
+ value: 0.22799999999999998
1281
+ - type: precision_at_3
1282
+ value: 22.531000000000002
1283
+ - type: precision_at_5
1284
+ value: 16.42
1285
+ - type: recall_at_1
1286
+ value: 17.948
1287
+ - type: recall_at_10
1288
+ value: 45.062999999999995
1289
+ - type: recall_at_100
1290
+ value: 68.191
1291
+ - type: recall_at_1000
1292
+ value: 87.954
1293
+ - type: recall_at_3
1294
+ value: 31.112000000000002
1295
+ - type: recall_at_5
1296
+ value: 36.823
1297
+ - task:
1298
+ type: Retrieval
1299
+ dataset:
1300
+ name: MTEB HotpotQA
1301
+ type: hotpotqa
1302
+ config: default
1303
+ split: test
1304
+ revision: None
1305
+ metrics:
1306
+ - type: map_at_1
1307
+ value: 36.644
1308
+ - type: map_at_10
1309
+ value: 57.658
1310
+ - type: map_at_100
1311
+ value: 58.562000000000005
1312
+ - type: map_at_1000
1313
+ value: 58.62500000000001
1314
+ - type: map_at_3
1315
+ value: 54.022999999999996
1316
+ - type: map_at_5
1317
+ value: 56.293000000000006
1318
+ - type: mrr_at_1
1319
+ value: 73.288
1320
+ - type: mrr_at_10
1321
+ value: 80.51700000000001
1322
+ - type: mrr_at_100
1323
+ value: 80.72
1324
+ - type: mrr_at_1000
1325
+ value: 80.728
1326
+ - type: mrr_at_3
1327
+ value: 79.33200000000001
1328
+ - type: mrr_at_5
1329
+ value: 80.085
1330
+ - type: ndcg_at_1
1331
+ value: 73.288
1332
+ - type: ndcg_at_10
1333
+ value: 66.61
1334
+ - type: ndcg_at_100
1335
+ value: 69.723
1336
+ - type: ndcg_at_1000
1337
+ value: 70.96000000000001
1338
+ - type: ndcg_at_3
1339
+ value: 61.358999999999995
1340
+ - type: ndcg_at_5
1341
+ value: 64.277
1342
+ - type: precision_at_1
1343
+ value: 73.288
1344
+ - type: precision_at_10
1345
+ value: 14.17
1346
+ - type: precision_at_100
1347
+ value: 1.659
1348
+ - type: precision_at_1000
1349
+ value: 0.182
1350
+ - type: precision_at_3
1351
+ value: 39.487
1352
+ - type: precision_at_5
1353
+ value: 25.999
1354
+ - type: recall_at_1
1355
+ value: 36.644
1356
+ - type: recall_at_10
1357
+ value: 70.851
1358
+ - type: recall_at_100
1359
+ value: 82.94399999999999
1360
+ - type: recall_at_1000
1361
+ value: 91.134
1362
+ - type: recall_at_3
1363
+ value: 59.230000000000004
1364
+ - type: recall_at_5
1365
+ value: 64.997
1366
+ - task:
1367
+ type: Classification
1368
+ dataset:
1369
+ name: MTEB ImdbClassification
1370
+ type: mteb/imdb
1371
+ config: default
1372
+ split: test
1373
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1374
+ metrics:
1375
+ - type: accuracy
1376
+ value: 86.00280000000001
1377
+ - type: ap
1378
+ value: 80.46302061021223
1379
+ - type: f1
1380
+ value: 85.9592921596419
1381
+ - task:
1382
+ type: Retrieval
1383
+ dataset:
1384
+ name: MTEB MSMARCO
1385
+ type: msmarco
1386
+ config: default
1387
+ split: dev
1388
+ revision: None
1389
+ metrics:
1390
+ - type: map_at_1
1391
+ value: 22.541
1392
+ - type: map_at_10
1393
+ value: 34.625
1394
+ - type: map_at_100
1395
+ value: 35.785
1396
+ - type: map_at_1000
1397
+ value: 35.831
1398
+ - type: map_at_3
1399
+ value: 30.823
1400
+ - type: map_at_5
1401
+ value: 32.967999999999996
1402
+ - type: mrr_at_1
1403
+ value: 23.180999999999997
1404
+ - type: mrr_at_10
1405
+ value: 35.207
1406
+ - type: mrr_at_100
1407
+ value: 36.315
1408
+ - type: mrr_at_1000
1409
+ value: 36.355
1410
+ - type: mrr_at_3
1411
+ value: 31.483
1412
+ - type: mrr_at_5
1413
+ value: 33.589999999999996
1414
+ - type: ndcg_at_1
1415
+ value: 23.195
1416
+ - type: ndcg_at_10
1417
+ value: 41.461
1418
+ - type: ndcg_at_100
1419
+ value: 47.032000000000004
1420
+ - type: ndcg_at_1000
1421
+ value: 48.199999999999996
1422
+ - type: ndcg_at_3
1423
+ value: 33.702
1424
+ - type: ndcg_at_5
1425
+ value: 37.522
1426
+ - type: precision_at_1
1427
+ value: 23.195
1428
+ - type: precision_at_10
1429
+ value: 6.526999999999999
1430
+ - type: precision_at_100
1431
+ value: 0.932
1432
+ - type: precision_at_1000
1433
+ value: 0.10300000000000001
1434
+ - type: precision_at_3
1435
+ value: 14.308000000000002
1436
+ - type: precision_at_5
1437
+ value: 10.507
1438
+ - type: recall_at_1
1439
+ value: 22.541
1440
+ - type: recall_at_10
1441
+ value: 62.524
1442
+ - type: recall_at_100
1443
+ value: 88.228
1444
+ - type: recall_at_1000
1445
+ value: 97.243
1446
+ - type: recall_at_3
1447
+ value: 41.38
1448
+ - type: recall_at_5
1449
+ value: 50.55
1450
+ - task:
1451
+ type: Classification
1452
+ dataset:
1453
+ name: MTEB MTOPDomainClassification (en)
1454
+ type: mteb/mtop_domain
1455
+ config: en
1456
+ split: test
1457
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1458
+ metrics:
1459
+ - type: accuracy
1460
+ value: 92.69949840401279
1461
+ - type: f1
1462
+ value: 92.54141471311786
1463
+ - task:
1464
+ type: Classification
1465
+ dataset:
1466
+ name: MTEB MTOPIntentClassification (en)
1467
+ type: mteb/mtop_intent
1468
+ config: en
1469
+ split: test
1470
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1471
+ metrics:
1472
+ - type: accuracy
1473
+ value: 72.56041951664386
1474
+ - type: f1
1475
+ value: 55.88499977508287
1476
+ - task:
1477
+ type: Classification
1478
+ dataset:
1479
+ name: MTEB MassiveIntentClassification (en)
1480
+ type: mteb/amazon_massive_intent
1481
+ config: en
1482
+ split: test
1483
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1484
+ metrics:
1485
+ - type: accuracy
1486
+ value: 71.62071284465365
1487
+ - type: f1
1488
+ value: 69.36717546572152
1489
+ - task:
1490
+ type: Classification
1491
+ dataset:
1492
+ name: MTEB MassiveScenarioClassification (en)
1493
+ type: mteb/amazon_massive_scenario
1494
+ config: en
1495
+ split: test
1496
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1497
+ metrics:
1498
+ - type: accuracy
1499
+ value: 76.35843981170142
1500
+ - type: f1
1501
+ value: 76.15496453538884
1502
+ - task:
1503
+ type: Clustering
1504
+ dataset:
1505
+ name: MTEB MedrxivClusteringP2P
1506
+ type: mteb/medrxiv-clustering-p2p
1507
+ config: default
1508
+ split: test
1509
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1510
+ metrics:
1511
+ - type: v_measure
1512
+ value: 31.33664956793118
1513
+ - task:
1514
+ type: Clustering
1515
+ dataset:
1516
+ name: MTEB MedrxivClusteringS2S
1517
+ type: mteb/medrxiv-clustering-s2s
1518
+ config: default
1519
+ split: test
1520
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1521
+ metrics:
1522
+ - type: v_measure
1523
+ value: 27.883839621715524
1524
+ - task:
1525
+ type: Reranking
1526
+ dataset:
1527
+ name: MTEB MindSmallReranking
1528
+ type: mteb/mind_small
1529
+ config: default
1530
+ split: test
1531
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1532
+ metrics:
1533
+ - type: map
1534
+ value: 30.096874986740758
1535
+ - type: mrr
1536
+ value: 30.97300481932132
1537
+ - task:
1538
+ type: Retrieval
1539
+ dataset:
1540
+ name: MTEB NFCorpus
1541
+ type: nfcorpus
1542
+ config: default
1543
+ split: test
1544
+ revision: None
1545
+ metrics:
1546
+ - type: map_at_1
1547
+ value: 5.4
1548
+ - type: map_at_10
1549
+ value: 11.852
1550
+ - type: map_at_100
1551
+ value: 14.758
1552
+ - type: map_at_1000
1553
+ value: 16.134
1554
+ - type: map_at_3
1555
+ value: 8.558
1556
+ - type: map_at_5
1557
+ value: 10.087
1558
+ - type: mrr_at_1
1559
+ value: 44.272
1560
+ - type: mrr_at_10
1561
+ value: 52.05800000000001
1562
+ - type: mrr_at_100
1563
+ value: 52.689
1564
+ - type: mrr_at_1000
1565
+ value: 52.742999999999995
1566
+ - type: mrr_at_3
1567
+ value: 50.205999999999996
1568
+ - type: mrr_at_5
1569
+ value: 51.367
1570
+ - type: ndcg_at_1
1571
+ value: 42.57
1572
+ - type: ndcg_at_10
1573
+ value: 32.449
1574
+ - type: ndcg_at_100
1575
+ value: 29.596
1576
+ - type: ndcg_at_1000
1577
+ value: 38.351
1578
+ - type: ndcg_at_3
1579
+ value: 37.044
1580
+ - type: ndcg_at_5
1581
+ value: 35.275
1582
+ - type: precision_at_1
1583
+ value: 44.272
1584
+ - type: precision_at_10
1585
+ value: 23.87
1586
+ - type: precision_at_100
1587
+ value: 7.625
1588
+ - type: precision_at_1000
1589
+ value: 2.045
1590
+ - type: precision_at_3
1591
+ value: 34.365
1592
+ - type: precision_at_5
1593
+ value: 30.341
1594
+ - type: recall_at_1
1595
+ value: 5.4
1596
+ - type: recall_at_10
1597
+ value: 15.943999999999999
1598
+ - type: recall_at_100
1599
+ value: 29.805
1600
+ - type: recall_at_1000
1601
+ value: 61.695
1602
+ - type: recall_at_3
1603
+ value: 9.539
1604
+ - type: recall_at_5
1605
+ value: 12.127
1606
+ - task:
1607
+ type: Retrieval
1608
+ dataset:
1609
+ name: MTEB NQ
1610
+ type: nq
1611
+ config: default
1612
+ split: test
1613
+ revision: None
1614
+ metrics:
1615
+ - type: map_at_1
1616
+ value: 36.047000000000004
1617
+ - type: map_at_10
1618
+ value: 51.6
1619
+ - type: map_at_100
1620
+ value: 52.449999999999996
1621
+ - type: map_at_1000
1622
+ value: 52.476
1623
+ - type: map_at_3
1624
+ value: 47.452
1625
+ - type: map_at_5
1626
+ value: 49.964
1627
+ - type: mrr_at_1
1628
+ value: 40.382
1629
+ - type: mrr_at_10
1630
+ value: 54.273
1631
+ - type: mrr_at_100
1632
+ value: 54.859
1633
+ - type: mrr_at_1000
1634
+ value: 54.876000000000005
1635
+ - type: mrr_at_3
1636
+ value: 51.014
1637
+ - type: mrr_at_5
1638
+ value: 52.983999999999995
1639
+ - type: ndcg_at_1
1640
+ value: 40.353
1641
+ - type: ndcg_at_10
1642
+ value: 59.11300000000001
1643
+ - type: ndcg_at_100
1644
+ value: 62.604000000000006
1645
+ - type: ndcg_at_1000
1646
+ value: 63.187000000000005
1647
+ - type: ndcg_at_3
1648
+ value: 51.513
1649
+ - type: ndcg_at_5
1650
+ value: 55.576
1651
+ - type: precision_at_1
1652
+ value: 40.353
1653
+ - type: precision_at_10
1654
+ value: 9.418
1655
+ - type: precision_at_100
1656
+ value: 1.1440000000000001
1657
+ - type: precision_at_1000
1658
+ value: 0.12
1659
+ - type: precision_at_3
1660
+ value: 23.078000000000003
1661
+ - type: precision_at_5
1662
+ value: 16.250999999999998
1663
+ - type: recall_at_1
1664
+ value: 36.047000000000004
1665
+ - type: recall_at_10
1666
+ value: 79.22200000000001
1667
+ - type: recall_at_100
1668
+ value: 94.23
1669
+ - type: recall_at_1000
1670
+ value: 98.51100000000001
1671
+ - type: recall_at_3
1672
+ value: 59.678
1673
+ - type: recall_at_5
1674
+ value: 68.967
1675
+ - task:
1676
+ type: Retrieval
1677
+ dataset:
1678
+ name: MTEB QuoraRetrieval
1679
+ type: quora
1680
+ config: default
1681
+ split: test
1682
+ revision: None
1683
+ metrics:
1684
+ - type: map_at_1
1685
+ value: 68.232
1686
+ - type: map_at_10
1687
+ value: 81.674
1688
+ - type: map_at_100
1689
+ value: 82.338
1690
+ - type: map_at_1000
1691
+ value: 82.36099999999999
1692
+ - type: map_at_3
1693
+ value: 78.833
1694
+ - type: map_at_5
1695
+ value: 80.58
1696
+ - type: mrr_at_1
1697
+ value: 78.64
1698
+ - type: mrr_at_10
1699
+ value: 85.164
1700
+ - type: mrr_at_100
1701
+ value: 85.317
1702
+ - type: mrr_at_1000
1703
+ value: 85.319
1704
+ - type: mrr_at_3
1705
+ value: 84.127
1706
+ - type: mrr_at_5
1707
+ value: 84.789
1708
+ - type: ndcg_at_1
1709
+ value: 78.63
1710
+ - type: ndcg_at_10
1711
+ value: 85.711
1712
+ - type: ndcg_at_100
1713
+ value: 87.238
1714
+ - type: ndcg_at_1000
1715
+ value: 87.444
1716
+ - type: ndcg_at_3
1717
+ value: 82.788
1718
+ - type: ndcg_at_5
1719
+ value: 84.313
1720
+ - type: precision_at_1
1721
+ value: 78.63
1722
+ - type: precision_at_10
1723
+ value: 12.977
1724
+ - type: precision_at_100
1725
+ value: 1.503
1726
+ - type: precision_at_1000
1727
+ value: 0.156
1728
+ - type: precision_at_3
1729
+ value: 36.113
1730
+ - type: precision_at_5
1731
+ value: 23.71
1732
+ - type: recall_at_1
1733
+ value: 68.232
1734
+ - type: recall_at_10
1735
+ value: 93.30199999999999
1736
+ - type: recall_at_100
1737
+ value: 98.799
1738
+ - type: recall_at_1000
1739
+ value: 99.885
1740
+ - type: recall_at_3
1741
+ value: 84.827
1742
+ - type: recall_at_5
1743
+ value: 89.188
1744
+ - task:
1745
+ type: Clustering
1746
+ dataset:
1747
+ name: MTEB RedditClustering
1748
+ type: mteb/reddit-clustering
1749
+ config: default
1750
+ split: test
1751
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1752
+ metrics:
1753
+ - type: v_measure
1754
+ value: 45.71879170816294
1755
+ - task:
1756
+ type: Clustering
1757
+ dataset:
1758
+ name: MTEB RedditClusteringP2P
1759
+ type: mteb/reddit-clustering-p2p
1760
+ config: default
1761
+ split: test
1762
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1763
+ metrics:
1764
+ - type: v_measure
1765
+ value: 59.65866311751794
1766
+ - task:
1767
+ type: Retrieval
1768
+ dataset:
1769
+ name: MTEB SCIDOCS
1770
+ type: scidocs
1771
+ config: default
1772
+ split: test
1773
+ revision: None
1774
+ metrics:
1775
+ - type: map_at_1
1776
+ value: 4.218
1777
+ - type: map_at_10
1778
+ value: 10.337
1779
+ - type: map_at_100
1780
+ value: 12.131
1781
+ - type: map_at_1000
1782
+ value: 12.411
1783
+ - type: map_at_3
1784
+ value: 7.4270000000000005
1785
+ - type: map_at_5
1786
+ value: 8.913
1787
+ - type: mrr_at_1
1788
+ value: 20.8
1789
+ - type: mrr_at_10
1790
+ value: 30.868000000000002
1791
+ - type: mrr_at_100
1792
+ value: 31.903
1793
+ - type: mrr_at_1000
1794
+ value: 31.972
1795
+ - type: mrr_at_3
1796
+ value: 27.367
1797
+ - type: mrr_at_5
1798
+ value: 29.372
1799
+ - type: ndcg_at_1
1800
+ value: 20.8
1801
+ - type: ndcg_at_10
1802
+ value: 17.765
1803
+ - type: ndcg_at_100
1804
+ value: 24.914
1805
+ - type: ndcg_at_1000
1806
+ value: 30.206
1807
+ - type: ndcg_at_3
1808
+ value: 16.64
1809
+ - type: ndcg_at_5
1810
+ value: 14.712
1811
+ - type: precision_at_1
1812
+ value: 20.8
1813
+ - type: precision_at_10
1814
+ value: 9.24
1815
+ - type: precision_at_100
1816
+ value: 1.9560000000000002
1817
+ - type: precision_at_1000
1818
+ value: 0.32299999999999995
1819
+ - type: precision_at_3
1820
+ value: 15.467
1821
+ - type: precision_at_5
1822
+ value: 12.94
1823
+ - type: recall_at_1
1824
+ value: 4.218
1825
+ - type: recall_at_10
1826
+ value: 18.752
1827
+ - type: recall_at_100
1828
+ value: 39.7
1829
+ - type: recall_at_1000
1830
+ value: 65.57300000000001
1831
+ - type: recall_at_3
1832
+ value: 9.428
1833
+ - type: recall_at_5
1834
+ value: 13.133000000000001
1835
+ - task:
1836
+ type: STS
1837
+ dataset:
1838
+ name: MTEB SICK-R
1839
+ type: mteb/sickr-sts
1840
+ config: default
1841
+ split: test
1842
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1843
+ metrics:
1844
+ - type: cos_sim_pearson
1845
+ value: 83.04338850207233
1846
+ - type: cos_sim_spearman
1847
+ value: 78.5054651430423
1848
+ - type: euclidean_pearson
1849
+ value: 80.30739451228612
1850
+ - type: euclidean_spearman
1851
+ value: 78.48377464299097
1852
+ - type: manhattan_pearson
1853
+ value: 80.40795049052781
1854
+ - type: manhattan_spearman
1855
+ value: 78.49506205443114
1856
+ - task:
1857
+ type: STS
1858
+ dataset:
1859
+ name: MTEB STS12
1860
+ type: mteb/sts12-sts
1861
+ config: default
1862
+ split: test
1863
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1864
+ metrics:
1865
+ - type: cos_sim_pearson
1866
+ value: 84.11596224442962
1867
+ - type: cos_sim_spearman
1868
+ value: 76.20997388935461
1869
+ - type: euclidean_pearson
1870
+ value: 80.56858451349109
1871
+ - type: euclidean_spearman
1872
+ value: 75.92659183871186
1873
+ - type: manhattan_pearson
1874
+ value: 80.60246102203844
1875
+ - type: manhattan_spearman
1876
+ value: 76.03018971432664
1877
+ - task:
1878
+ type: STS
1879
+ dataset:
1880
+ name: MTEB STS13
1881
+ type: mteb/sts13-sts
1882
+ config: default
1883
+ split: test
1884
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1885
+ metrics:
1886
+ - type: cos_sim_pearson
1887
+ value: 81.34691640755737
1888
+ - type: cos_sim_spearman
1889
+ value: 82.4018369631579
1890
+ - type: euclidean_pearson
1891
+ value: 81.87673092245366
1892
+ - type: euclidean_spearman
1893
+ value: 82.3671489960678
1894
+ - type: manhattan_pearson
1895
+ value: 81.88222387719948
1896
+ - type: manhattan_spearman
1897
+ value: 82.3816590344736
1898
+ - task:
1899
+ type: STS
1900
+ dataset:
1901
+ name: MTEB STS14
1902
+ type: mteb/sts14-sts
1903
+ config: default
1904
+ split: test
1905
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1906
+ metrics:
1907
+ - type: cos_sim_pearson
1908
+ value: 81.2836092579524
1909
+ - type: cos_sim_spearman
1910
+ value: 78.99982781772064
1911
+ - type: euclidean_pearson
1912
+ value: 80.5184271010527
1913
+ - type: euclidean_spearman
1914
+ value: 78.89777392101904
1915
+ - type: manhattan_pearson
1916
+ value: 80.53585705018664
1917
+ - type: manhattan_spearman
1918
+ value: 78.92898405472994
1919
+ - task:
1920
+ type: STS
1921
+ dataset:
1922
+ name: MTEB STS15
1923
+ type: mteb/sts15-sts
1924
+ config: default
1925
+ split: test
1926
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1927
+ metrics:
1928
+ - type: cos_sim_pearson
1929
+ value: 86.7349907750784
1930
+ - type: cos_sim_spearman
1931
+ value: 87.7611234446225
1932
+ - type: euclidean_pearson
1933
+ value: 86.98759326731624
1934
+ - type: euclidean_spearman
1935
+ value: 87.58321319424618
1936
+ - type: manhattan_pearson
1937
+ value: 87.03483090370842
1938
+ - type: manhattan_spearman
1939
+ value: 87.63278333060288
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ name: MTEB STS16
1944
+ type: mteb/sts16-sts
1945
+ config: default
1946
+ split: test
1947
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 81.75873694924825
1951
+ - type: cos_sim_spearman
1952
+ value: 83.80237999094724
1953
+ - type: euclidean_pearson
1954
+ value: 83.55023725861537
1955
+ - type: euclidean_spearman
1956
+ value: 84.12744338577744
1957
+ - type: manhattan_pearson
1958
+ value: 83.58816983036232
1959
+ - type: manhattan_spearman
1960
+ value: 84.18520748676501
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ name: MTEB STS17 (en-en)
1965
+ type: mteb/sts17-crosslingual-sts
1966
+ config: en-en
1967
+ split: test
1968
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 87.21630882940174
1972
+ - type: cos_sim_spearman
1973
+ value: 87.72382883437031
1974
+ - type: euclidean_pearson
1975
+ value: 88.69933350930333
1976
+ - type: euclidean_spearman
1977
+ value: 88.24660814383081
1978
+ - type: manhattan_pearson
1979
+ value: 88.77331018833499
1980
+ - type: manhattan_spearman
1981
+ value: 88.26109989380632
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ name: MTEB STS22 (en)
1986
+ type: mteb/sts22-crosslingual-sts
1987
+ config: en
1988
+ split: test
1989
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 61.11854063060489
1993
+ - type: cos_sim_spearman
1994
+ value: 63.14678634195072
1995
+ - type: euclidean_pearson
1996
+ value: 61.679090067000864
1997
+ - type: euclidean_spearman
1998
+ value: 62.28876589509653
1999
+ - type: manhattan_pearson
2000
+ value: 62.082324165511004
2001
+ - type: manhattan_spearman
2002
+ value: 62.56030932816679
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ name: MTEB STSBenchmark
2007
+ type: mteb/stsbenchmark-sts
2008
+ config: default
2009
+ split: test
2010
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 84.00319882832645
2014
+ - type: cos_sim_spearman
2015
+ value: 85.94529772647257
2016
+ - type: euclidean_pearson
2017
+ value: 85.6661390122756
2018
+ - type: euclidean_spearman
2019
+ value: 85.97747815545827
2020
+ - type: manhattan_pearson
2021
+ value: 85.58422770541893
2022
+ - type: manhattan_spearman
2023
+ value: 85.9237139181532
2024
+ - task:
2025
+ type: Reranking
2026
+ dataset:
2027
+ name: MTEB SciDocsRR
2028
+ type: mteb/scidocs-reranking
2029
+ config: default
2030
+ split: test
2031
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2032
+ metrics:
2033
+ - type: map
2034
+ value: 79.16198731863916
2035
+ - type: mrr
2036
+ value: 94.25202702163487
2037
+ - task:
2038
+ type: Retrieval
2039
+ dataset:
2040
+ name: MTEB SciFact
2041
+ type: scifact
2042
+ config: default
2043
+ split: test
2044
+ revision: None
2045
+ metrics:
2046
+ - type: map_at_1
2047
+ value: 54.761
2048
+ - type: map_at_10
2049
+ value: 64.396
2050
+ - type: map_at_100
2051
+ value: 65.07
2052
+ - type: map_at_1000
2053
+ value: 65.09899999999999
2054
+ - type: map_at_3
2055
+ value: 61.846000000000004
2056
+ - type: map_at_5
2057
+ value: 63.284
2058
+ - type: mrr_at_1
2059
+ value: 57.667
2060
+ - type: mrr_at_10
2061
+ value: 65.83099999999999
2062
+ - type: mrr_at_100
2063
+ value: 66.36800000000001
2064
+ - type: mrr_at_1000
2065
+ value: 66.39399999999999
2066
+ - type: mrr_at_3
2067
+ value: 64.056
2068
+ - type: mrr_at_5
2069
+ value: 65.206
2070
+ - type: ndcg_at_1
2071
+ value: 57.667
2072
+ - type: ndcg_at_10
2073
+ value: 68.854
2074
+ - type: ndcg_at_100
2075
+ value: 71.59100000000001
2076
+ - type: ndcg_at_1000
2077
+ value: 72.383
2078
+ - type: ndcg_at_3
2079
+ value: 64.671
2080
+ - type: ndcg_at_5
2081
+ value: 66.796
2082
+ - type: precision_at_1
2083
+ value: 57.667
2084
+ - type: precision_at_10
2085
+ value: 9.167
2086
+ - type: precision_at_100
2087
+ value: 1.053
2088
+ - type: precision_at_1000
2089
+ value: 0.11199999999999999
2090
+ - type: precision_at_3
2091
+ value: 25.444
2092
+ - type: precision_at_5
2093
+ value: 16.667
2094
+ - type: recall_at_1
2095
+ value: 54.761
2096
+ - type: recall_at_10
2097
+ value: 80.9
2098
+ - type: recall_at_100
2099
+ value: 92.767
2100
+ - type: recall_at_1000
2101
+ value: 99
2102
+ - type: recall_at_3
2103
+ value: 69.672
2104
+ - type: recall_at_5
2105
+ value: 75.083
2106
+ - task:
2107
+ type: PairClassification
2108
+ dataset:
2109
+ name: MTEB SprintDuplicateQuestions
2110
+ type: mteb/sprintduplicatequestions-pairclassification
2111
+ config: default
2112
+ split: test
2113
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2114
+ metrics:
2115
+ - type: cos_sim_accuracy
2116
+ value: 99.8079207920792
2117
+ - type: cos_sim_ap
2118
+ value: 94.88470927617445
2119
+ - type: cos_sim_f1
2120
+ value: 90.08179959100204
2121
+ - type: cos_sim_precision
2122
+ value: 92.15481171548117
2123
+ - type: cos_sim_recall
2124
+ value: 88.1
2125
+ - type: dot_accuracy
2126
+ value: 99.58613861386138
2127
+ - type: dot_ap
2128
+ value: 82.94822578881316
2129
+ - type: dot_f1
2130
+ value: 77.33333333333333
2131
+ - type: dot_precision
2132
+ value: 79.36842105263158
2133
+ - type: dot_recall
2134
+ value: 75.4
2135
+ - type: euclidean_accuracy
2136
+ value: 99.8069306930693
2137
+ - type: euclidean_ap
2138
+ value: 94.81367858031837
2139
+ - type: euclidean_f1
2140
+ value: 90.01009081735621
2141
+ - type: euclidean_precision
2142
+ value: 90.83503054989816
2143
+ - type: euclidean_recall
2144
+ value: 89.2
2145
+ - type: manhattan_accuracy
2146
+ value: 99.81188118811882
2147
+ - type: manhattan_ap
2148
+ value: 94.91405337220161
2149
+ - type: manhattan_f1
2150
+ value: 90.2763561924258
2151
+ - type: manhattan_precision
2152
+ value: 92.45283018867924
2153
+ - type: manhattan_recall
2154
+ value: 88.2
2155
+ - type: max_accuracy
2156
+ value: 99.81188118811882
2157
+ - type: max_ap
2158
+ value: 94.91405337220161
2159
+ - type: max_f1
2160
+ value: 90.2763561924258
2161
+ - task:
2162
+ type: Clustering
2163
+ dataset:
2164
+ name: MTEB StackExchangeClustering
2165
+ type: mteb/stackexchange-clustering
2166
+ config: default
2167
+ split: test
2168
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2169
+ metrics:
2170
+ - type: v_measure
2171
+ value: 58.511599500053094
2172
+ - task:
2173
+ type: Clustering
2174
+ dataset:
2175
+ name: MTEB StackExchangeClusteringP2P
2176
+ type: mteb/stackexchange-clustering-p2p
2177
+ config: default
2178
+ split: test
2179
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2180
+ metrics:
2181
+ - type: v_measure
2182
+ value: 31.984728147814707
2183
+ - task:
2184
+ type: Reranking
2185
+ dataset:
2186
+ name: MTEB StackOverflowDupQuestions
2187
+ type: mteb/stackoverflowdupquestions-reranking
2188
+ config: default
2189
+ split: test
2190
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2191
+ metrics:
2192
+ - type: map
2193
+ value: 49.93428193939015
2194
+ - type: mrr
2195
+ value: 50.916557911043206
2196
+ - task:
2197
+ type: Summarization
2198
+ dataset:
2199
+ name: MTEB SummEval
2200
+ type: mteb/summeval
2201
+ config: default
2202
+ split: test
2203
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2204
+ metrics:
2205
+ - type: cos_sim_pearson
2206
+ value: 31.562500894537145
2207
+ - type: cos_sim_spearman
2208
+ value: 31.162587976726307
2209
+ - type: dot_pearson
2210
+ value: 22.633662187735762
2211
+ - type: dot_spearman
2212
+ value: 22.723000282378962
2213
+ - task:
2214
+ type: Retrieval
2215
+ dataset:
2216
+ name: MTEB TRECCOVID
2217
+ type: trec-covid
2218
+ config: default
2219
+ split: test
2220
+ revision: None
2221
+ metrics:
2222
+ - type: map_at_1
2223
+ value: 0.219
2224
+ - type: map_at_10
2225
+ value: 1.871
2226
+ - type: map_at_100
2227
+ value: 10.487
2228
+ - type: map_at_1000
2229
+ value: 25.122
2230
+ - type: map_at_3
2231
+ value: 0.657
2232
+ - type: map_at_5
2233
+ value: 1.0699999999999998
2234
+ - type: mrr_at_1
2235
+ value: 84
2236
+ - type: mrr_at_10
2237
+ value: 89.567
2238
+ - type: mrr_at_100
2239
+ value: 89.748
2240
+ - type: mrr_at_1000
2241
+ value: 89.748
2242
+ - type: mrr_at_3
2243
+ value: 88.667
2244
+ - type: mrr_at_5
2245
+ value: 89.567
2246
+ - type: ndcg_at_1
2247
+ value: 80
2248
+ - type: ndcg_at_10
2249
+ value: 74.533
2250
+ - type: ndcg_at_100
2251
+ value: 55.839000000000006
2252
+ - type: ndcg_at_1000
2253
+ value: 49.748
2254
+ - type: ndcg_at_3
2255
+ value: 79.53099999999999
2256
+ - type: ndcg_at_5
2257
+ value: 78.245
2258
+ - type: precision_at_1
2259
+ value: 84
2260
+ - type: precision_at_10
2261
+ value: 78.4
2262
+ - type: precision_at_100
2263
+ value: 56.99999999999999
2264
+ - type: precision_at_1000
2265
+ value: 21.98
2266
+ - type: precision_at_3
2267
+ value: 85.333
2268
+ - type: precision_at_5
2269
+ value: 84.8
2270
+ - type: recall_at_1
2271
+ value: 0.219
2272
+ - type: recall_at_10
2273
+ value: 2.02
2274
+ - type: recall_at_100
2275
+ value: 13.555
2276
+ - type: recall_at_1000
2277
+ value: 46.739999999999995
2278
+ - type: recall_at_3
2279
+ value: 0.685
2280
+ - type: recall_at_5
2281
+ value: 1.13
2282
+ - task:
2283
+ type: Retrieval
2284
+ dataset:
2285
+ name: MTEB Touche2020
2286
+ type: webis-touche2020
2287
+ config: default
2288
+ split: test
2289
+ revision: None
2290
+ metrics:
2291
+ - type: map_at_1
2292
+ value: 3.5029999999999997
2293
+ - type: map_at_10
2294
+ value: 11.042
2295
+ - type: map_at_100
2296
+ value: 16.326999999999998
2297
+ - type: map_at_1000
2298
+ value: 17.836
2299
+ - type: map_at_3
2300
+ value: 6.174
2301
+ - type: map_at_5
2302
+ value: 7.979
2303
+ - type: mrr_at_1
2304
+ value: 42.857
2305
+ - type: mrr_at_10
2306
+ value: 52.617000000000004
2307
+ - type: mrr_at_100
2308
+ value: 53.351000000000006
2309
+ - type: mrr_at_1000
2310
+ value: 53.351000000000006
2311
+ - type: mrr_at_3
2312
+ value: 46.939
2313
+ - type: mrr_at_5
2314
+ value: 50.714000000000006
2315
+ - type: ndcg_at_1
2316
+ value: 38.775999999999996
2317
+ - type: ndcg_at_10
2318
+ value: 27.125
2319
+ - type: ndcg_at_100
2320
+ value: 35.845
2321
+ - type: ndcg_at_1000
2322
+ value: 47.377
2323
+ - type: ndcg_at_3
2324
+ value: 29.633
2325
+ - type: ndcg_at_5
2326
+ value: 28.378999999999998
2327
+ - type: precision_at_1
2328
+ value: 42.857
2329
+ - type: precision_at_10
2330
+ value: 24.082
2331
+ - type: precision_at_100
2332
+ value: 6.877999999999999
2333
+ - type: precision_at_1000
2334
+ value: 1.463
2335
+ - type: precision_at_3
2336
+ value: 29.932
2337
+ - type: precision_at_5
2338
+ value: 28.571
2339
+ - type: recall_at_1
2340
+ value: 3.5029999999999997
2341
+ - type: recall_at_10
2342
+ value: 17.068
2343
+ - type: recall_at_100
2344
+ value: 43.361
2345
+ - type: recall_at_1000
2346
+ value: 78.835
2347
+ - type: recall_at_3
2348
+ value: 6.821000000000001
2349
+ - type: recall_at_5
2350
+ value: 10.357
2351
+ - task:
2352
+ type: Classification
2353
+ dataset:
2354
+ name: MTEB ToxicConversationsClassification
2355
+ type: mteb/toxic_conversations_50k
2356
+ config: default
2357
+ split: test
2358
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2359
+ metrics:
2360
+ - type: accuracy
2361
+ value: 71.0954
2362
+ - type: ap
2363
+ value: 14.216844153511959
2364
+ - type: f1
2365
+ value: 54.63687418565117
2366
+ - task:
2367
+ type: Classification
2368
+ dataset:
2369
+ name: MTEB TweetSentimentExtractionClassification
2370
+ type: mteb/tweet_sentiment_extraction
2371
+ config: default
2372
+ split: test
2373
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2374
+ metrics:
2375
+ - type: accuracy
2376
+ value: 61.46293152235427
2377
+ - type: f1
2378
+ value: 61.744177921638645
2379
+ - task:
2380
+ type: Clustering
2381
+ dataset:
2382
+ name: MTEB TwentyNewsgroupsClustering
2383
+ type: mteb/twentynewsgroups-clustering
2384
+ config: default
2385
+ split: test
2386
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2387
+ metrics:
2388
+ - type: v_measure
2389
+ value: 41.12708617788644
2390
+ - task:
2391
+ type: PairClassification
2392
+ dataset:
2393
+ name: MTEB TwitterSemEval2015
2394
+ type: mteb/twittersemeval2015-pairclassification
2395
+ config: default
2396
+ split: test
2397
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2398
+ metrics:
2399
+ - type: cos_sim_accuracy
2400
+ value: 85.75430649102938
2401
+ - type: cos_sim_ap
2402
+ value: 73.34252536948081
2403
+ - type: cos_sim_f1
2404
+ value: 67.53758935173774
2405
+ - type: cos_sim_precision
2406
+ value: 63.3672525439408
2407
+ - type: cos_sim_recall
2408
+ value: 72.29551451187335
2409
+ - type: dot_accuracy
2410
+ value: 81.71305954580676
2411
+ - type: dot_ap
2412
+ value: 59.5532209082386
2413
+ - type: dot_f1
2414
+ value: 56.18466898954705
2415
+ - type: dot_precision
2416
+ value: 47.830923248053395
2417
+ - type: dot_recall
2418
+ value: 68.07387862796834
2419
+ - type: euclidean_accuracy
2420
+ value: 85.81987244441795
2421
+ - type: euclidean_ap
2422
+ value: 73.34325409809446
2423
+ - type: euclidean_f1
2424
+ value: 67.83451360417443
2425
+ - type: euclidean_precision
2426
+ value: 64.09955388588871
2427
+ - type: euclidean_recall
2428
+ value: 72.0316622691293
2429
+ - type: manhattan_accuracy
2430
+ value: 85.68277999642368
2431
+ - type: manhattan_ap
2432
+ value: 73.1535450121903
2433
+ - type: manhattan_f1
2434
+ value: 67.928237896289
2435
+ - type: manhattan_precision
2436
+ value: 63.56945722171113
2437
+ - type: manhattan_recall
2438
+ value: 72.9287598944591
2439
+ - type: max_accuracy
2440
+ value: 85.81987244441795
2441
+ - type: max_ap
2442
+ value: 73.34325409809446
2443
+ - type: max_f1
2444
+ value: 67.928237896289
2445
+ - task:
2446
+ type: PairClassification
2447
+ dataset:
2448
+ name: MTEB TwitterURLCorpus
2449
+ type: mteb/twitterurlcorpus-pairclassification
2450
+ config: default
2451
+ split: test
2452
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2453
+ metrics:
2454
+ - type: cos_sim_accuracy
2455
+ value: 88.90441262079403
2456
+ - type: cos_sim_ap
2457
+ value: 85.79331880741438
2458
+ - type: cos_sim_f1
2459
+ value: 78.31563529842548
2460
+ - type: cos_sim_precision
2461
+ value: 74.6683424102779
2462
+ - type: cos_sim_recall
2463
+ value: 82.33754234678165
2464
+ - type: dot_accuracy
2465
+ value: 84.89928978926534
2466
+ - type: dot_ap
2467
+ value: 75.25819218316
2468
+ - type: dot_f1
2469
+ value: 69.88730119720536
2470
+ - type: dot_precision
2471
+ value: 64.23362374959665
2472
+ - type: dot_recall
2473
+ value: 76.63227594702803
2474
+ - type: euclidean_accuracy
2475
+ value: 89.01695967710637
2476
+ - type: euclidean_ap
2477
+ value: 85.98986606038852
2478
+ - type: euclidean_f1
2479
+ value: 78.5277880014722
2480
+ - type: euclidean_precision
2481
+ value: 75.22211253701876
2482
+ - type: euclidean_recall
2483
+ value: 82.13735756082538
2484
+ - type: manhattan_accuracy
2485
+ value: 88.99561454573679
2486
+ - type: manhattan_ap
2487
+ value: 85.92262421793953
2488
+ - type: manhattan_f1
2489
+ value: 78.38866094740769
2490
+ - type: manhattan_precision
2491
+ value: 76.02373028505282
2492
+ - type: manhattan_recall
2493
+ value: 80.9054511857099
2494
+ - type: max_accuracy
2495
+ value: 89.01695967710637
2496
+ - type: max_ap
2497
+ value: 85.98986606038852
2498
+ - type: max_f1
2499
+ value: 78.5277880014722
2500
+ ---
2501
+
2502
+ # danbev/e5-small-v2-Q8_0-GGUF
2503
+ This model was converted to GGUF format from [`intfloat/e5-small-v2`](https://huggingface.co/intfloat/e5-small-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2504
+ Refer to the [original model card](https://huggingface.co/intfloat/e5-small-v2) for more details on the model.
2505
+
2506
+ ## Use with llama.cpp
2507
+ Install llama.cpp through brew (works on Mac and Linux)
2508
+
2509
+ ```bash
2510
+ brew install llama.cpp
2511
+
2512
+ ```
2513
+ Invoke the llama.cpp server or the CLI.
2514
+
2515
+ ### CLI:
2516
+ ```bash
2517
+ llama-cli --hf-repo danbev/e5-small-v2-Q8_0-GGUF --hf-file e5-small-v2-q8_0.gguf -p "The meaning to life and the universe is"
2518
+ ```
2519
+
2520
+ ### Server:
2521
+ ```bash
2522
+ llama-server --hf-repo danbev/e5-small-v2-Q8_0-GGUF --hf-file e5-small-v2-q8_0.gguf -c 2048
2523
+ ```
2524
+
2525
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2526
+
2527
+ Step 1: Clone llama.cpp from GitHub.
2528
+ ```
2529
+ git clone https://github.com/ggerganov/llama.cpp
2530
+ ```
2531
+
2532
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2533
+ ```
2534
+ cd llama.cpp && LLAMA_CURL=1 make
2535
+ ```
2536
+
2537
+ Step 3: Run inference through the main binary.
2538
+ ```
2539
+ ./llama-cli --hf-repo danbev/e5-small-v2-Q8_0-GGUF --hf-file e5-small-v2-q8_0.gguf -p "The meaning to life and the universe is"
2540
+ ```
2541
+ or
2542
+ ```
2543
+ ./llama-server --hf-repo danbev/e5-small-v2-Q8_0-GGUF --hf-file e5-small-v2-q8_0.gguf -c 2048
2544
+ ```