|
|
|
|
|
import cv2
|
|
from keras.models import Sequential
|
|
from keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten
|
|
from keras.optimizers import Adam
|
|
from keras.preprocessing.image import ImageDataGenerator
|
|
from sklearn.utils.class_weight import compute_class_weight
|
|
import numpy as np
|
|
|
|
|
|
train_data_gen = ImageDataGenerator(rescale=1./255)
|
|
validation_data_gen = ImageDataGenerator(rescale=1./255)
|
|
|
|
|
|
train_generator = train_data_gen.flow_from_directory(
|
|
'data/train',
|
|
target_size=(48, 48),
|
|
batch_size=64,
|
|
color_mode="grayscale",
|
|
class_mode='categorical')
|
|
|
|
|
|
|
|
|
|
class_labels = train_generator.classes
|
|
class_weights = compute_class_weight(class_weight = "balanced", classes= np.unique(class_labels), y= class_labels)
|
|
class_weight_dict = dict(enumerate(class_weights))
|
|
|
|
|
|
|
|
validation_generator = validation_data_gen.flow_from_directory(
|
|
'data/test',
|
|
target_size=(48, 48),
|
|
batch_size=64,
|
|
color_mode="grayscale",
|
|
class_mode='categorical')
|
|
|
|
|
|
emotion_model = Sequential()
|
|
|
|
emotion_model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48, 48, 1)))
|
|
emotion_model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Dropout(0.25))
|
|
|
|
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
|
|
emotion_model.add(MaxPooling2D(pool_size=(2, 2)))
|
|
emotion_model.add(Dropout(0.25))
|
|
|
|
emotion_model.add(Flatten())
|
|
emotion_model.add(Dense(1024, activation='relu'))
|
|
emotion_model.add(Dropout(0.5))
|
|
emotion_model.add(Dense(3, activation='softmax'))
|
|
|
|
cv2.ocl.setUseOpenCL(False)
|
|
|
|
emotion_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001), metrics=['accuracy'])
|
|
|
|
|
|
emotion_model_info = emotion_model.fit_generator(
|
|
train_generator,
|
|
steps_per_epoch=len(train_generator) // 64,
|
|
epochs=100,
|
|
validation_data=validation_generator,
|
|
validation_steps=7178 // 64,
|
|
class_weight=class_weight_dict)
|
|
|
|
|
|
|
|
model_json = emotion_model.to_json()
|
|
with open("model/emotion_model.json", "w") as json_file:
|
|
json_file.write(model_json)
|
|
|
|
|
|
emotion_model.save_weights('model/emotion_model.h5') |