Commit
·
7278321
1
Parent(s):
bd06a05
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: mr
|
3 |
+
datasets:
|
4 |
+
- interspeech_2021_asr
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: XLSR Wav2Vec2 Large 53 Marathi 2 by Gunjan Chhablani
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: InterSpeech 2021 ASR mr
|
21 |
+
type: interspeech_2021_asr
|
22 |
+
metrics:
|
23 |
+
- name: Test WER
|
24 |
+
type: wer
|
25 |
+
value: 14.53
|
26 |
+
---
|
27 |
+
|
28 |
+
# Wav2Vec2-Large-XLSR-53-Marathi
|
29 |
+
|
30 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using a part of the [InterSpeech 2021 Marathi](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) dataset. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields:
|
35 |
+
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
import torchaudio
|
39 |
+
from datasets import load_dataset
|
40 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
+
|
42 |
+
# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section.
|
43 |
+
|
44 |
+
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
|
45 |
+
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
|
46 |
+
|
47 |
+
resampler = torchaudio.transforms.Resample(8_000, 16_000) # The original data was with 8,000 sampling rate. You can change it according to your input.
|
48 |
+
|
49 |
+
# Preprocessing the datasets.
|
50 |
+
# We need to read the audio files as arrays
|
51 |
+
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
+
|
56 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
61 |
+
|
62 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
63 |
+
|
64 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
+
print("Reference:", test_dataset["sentence"][:2])
|
66 |
+
```
|
67 |
+
|
68 |
+
|
69 |
+
## Evaluation
|
70 |
+
|
71 |
+
The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.
|
72 |
+
|
73 |
+
```python
|
74 |
+
import torch
|
75 |
+
import torchaudio
|
76 |
+
from datasets import load_dataset, load_metric
|
77 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
78 |
+
import re
|
79 |
+
|
80 |
+
# test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section.
|
81 |
+
|
82 |
+
wer = load_metric("wer")
|
83 |
+
|
84 |
+
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
|
85 |
+
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
|
86 |
+
model.to("cuda")
|
87 |
+
|
88 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]'
|
89 |
+
resampler = torchaudio.transforms.Resample(8_000, 16_000)
|
90 |
+
|
91 |
+
# Preprocessing the datasets.
|
92 |
+
# We need to read the aduio files as arrays
|
93 |
+
def speech_file_to_array_fn(batch):
|
94 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
95 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
96 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
97 |
+
return batch
|
98 |
+
|
99 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
+
|
101 |
+
# Preprocessing the datasets.
|
102 |
+
# We need to read the aduio files as arrays
|
103 |
+
def evaluate(batch):
|
104 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
105 |
+
with torch.no_grad():
|
106 |
+
logits = model(inputs.input_values.to("cuda"),
|
107 |
+
attention_mask=inputs.attention_mask.to("cuda")).logits
|
108 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
109 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
110 |
+
return batch
|
111 |
+
|
112 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
+
|
114 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
115 |
+
```
|
116 |
+
|
117 |
+
**Test Result**: 19.98 % (555 examples from test set were used for evaluation)
|
118 |
+
|
119 |
+
**Test Result on 10% of OpenSLR74 data**: 64.64 %
|
120 |
+
|
121 |
+
## Training
|
122 |
+
|
123 |
+
5000 examples of the InterSpeech Marathi dataset were used for training.
|
124 |
+
The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1sIwGOLJPQqhKm_wVZDkzRuoJqAEgArFr?usp=sharing).
|