--- license: llama3.1 language: - en library_name: transformers tags: - mergekit - merge base_model: - meta-llama/Meta-Llama-3.1-70B-Instruct - NousResearch/Hermes-3-Llama-3.1-70B - abacusai/Dracarys-Llama-3.1-70B-Instruct - VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/yDDOz1fsWfSviCGtCh3f3.png) **Brinebreath-Llama-3.1-70B** ===================================== I made this since I started having some problems with Cathallama. This seems to behave well during some days testing. **Notable Performance** * 7% overall success rate increase on MMLU-PRO over LLaMA 3.1 70b at Q4_0 * Strong performance in MMLU-PRO categories overall * Great performance during manual testing **Creation workflow** ===================== **Models merged** * meta-llama/Meta-Llama-3.1-70B-Instruct * NousResearch/Hermes-3-Llama-3.1-70B * abacusai/Dracarys-Llama-3.1-70B-Instruct * VAGOsolutions/Llama-3.1-SauerkrautLM-70b-Instruct ``` flowchart TD A[Hermes 3] -->|Merge with| B[Meta-Llama-3.1] C[Dracarys] -->|Merge with| D[Meta-Llama-3.1] B -->| | E[Merge] D -->| | E[Merge] G[SauerkrautLM] -->|Merge with| E[Merge] E[Merge] -->| | F[Brinebreath] ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/649dc85249ae3a68334adcc6/3cjOUfghMD2GvxL7a3SOh.png) **Testing** ===================== **Hyperparameters** --------------- * **Temperature**: 0.0 for automated, 0.9 for manual * **Penalize repeat sequence**: 1.05 * **Consider N tokens for penalize**: 256 * **Penalize repetition of newlines** * **Top-K sampling**: 40 * **Top-P sampling**: 0.95 * **Min-P sampling**: 0.05 **LLaMAcpp Version** ------------------ * b3600-1-g2339a0be * -fa -ngl -1 -ctk f16 --no-mmap **Tested Files** ------------------ * Brinebreath-Llama-3.1-70B.Q4_0.gguf * Meta-Llama-3.1-70B-Instruct.Q4_0.gguf **Manual testing** | Category | Test Case | Brinebreath-Llama-3.1-70B.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | | --- | --- | --- | --- | | **Common Sense** | Ball on cup | OK | OK | | | Big duck small horse | OK | OK | | | Killers | OK | OK | | | Strawberry r's | KO | KO | | | 9.11 or 9.9 bigger | KO | KO | | | Dragon or lens | KO | KO | | | Shirts | OK | KO | | | Sisters | OK | KO | | | Jane faster | OK | OK | | **Programming** | JSON | OK | OK | | | Python snake game | OK | KO | | **Math** | Door window combination | OK | KO | | **Smoke** | Poem | OK | OK | | | Story | OK | OK | *Note: See [sample_generations.txt](https://huggingface.co/gbueno86/Brinebreath-Llama-3.1-70B/blob/main/sample_generations.txt) on the main folder of the repo for the raw generations.* **MMLU-PRO** | Model | Success % | | --- | --- | | Brinebreath-3.1-70B.Q4_0.gguf | **49.0%** | | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 42.0% | | MMLU-PRO category| Brinebreath-3.1-70B.Q4_0.gguf | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | | --- | --- | --- | | Business | **45.0%** | 40.0% | | Law | **40.0%** | 35.0% | | Psychology | **85.0%** | 80.0% | | Biology | **80.0%** | 75.0% | | Chemistry | **50.0%** | 45.0% | | History | **65.0%** | 60.0% | | Other | **55.0%** | 50.0% | | Health | **70.0%** | 65.0% | | Economics | **80.0%** | 75.0% | | Math | **35.0%** | 30.0% | | Physics | **45.0%** | 40.0% | | Computer Science | **60.0%** | 55.0% | | Philosophy | **50.0%** | 45.0% | | Engineering | **45.0%** | 40.0% | Note: MMLU-PRO Overall tested with 100 questions. Categories testes with 20 questions from each category. **PubmedQA** Model Name | Success% | | --- | --- | | Brinebreath-3.1-70B.Q4_0.gguf| **71.00%** | | Meta-Llama-3.1-70B-Instruct.Q4_0.gguf | 68.00% | Note: PubmedQA tested with 100 questions. **Request** -------------- If you are hiring in the EU or can sponsor a visa, PM me :D PS. Thank you mradermacher for the GGUFs!