File size: 2,161 Bytes
8624a01 9ab92c1 8624a01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: EleutherAI/pythia-410m
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: java_and_text_pythia_410m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/zhenwu/code-text-pretraining/runs/sl1f0u8x)
# java_and_text_pythia_410m
This model is a fine-tuned version of [EleutherAI/pythia-410m](https://huggingface.co/EleutherAI/pythia-410m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6663
- Accuracy: 0.1806
- Num Input Tokens Seen: 1990656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 8
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|
| No log | 0 | 0 | 2.6310 | 0.25 | 0 |
| 1.9603 | 0.6173 | 50 | 1.8225 | 0.1944 | 409600 |
| 1.7774 | 1.2346 | 100 | 1.7544 | 0.1806 | 819200 |
| 1.6193 | 1.8519 | 150 | 1.6663 | 0.1806 | 1228800 |
| 1.7311 | 2.4691 | 200 | 1.7399 | 0.1944 | 1638400 |
### Framework versions
- Transformers 4.43.2
- Pytorch 2.4.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|