Commit
·
b4f8d67
1
Parent(s):
b25e454
Upload parse_czech_squad.py
Browse files- parse_czech_squad.py +106 -0
parse_czech_squad.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os.path
|
| 3 |
+
from typing import Iterable
|
| 4 |
+
|
| 5 |
+
data_folder = "data/czech-squad-v3"
|
| 6 |
+
|
| 7 |
+
shorten_to_sentences = 4
|
| 8 |
+
|
| 9 |
+
out_json = "data/czech_squad_%s-sents.json" % shorten_to_sentences
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def read_first_entries(fpath: str, sep: str = "\t"):
|
| 13 |
+
line_collector = []
|
| 14 |
+
|
| 15 |
+
with open(fpath) as f:
|
| 16 |
+
for line in f.readlines():
|
| 17 |
+
entry = line.split(sep)[0]
|
| 18 |
+
line_collector.append(entry)
|
| 19 |
+
|
| 20 |
+
return line_collector
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def collect_tokens(s: Iterable[str]) -> str:
|
| 24 |
+
out_str = ""
|
| 25 |
+
last_g = False
|
| 26 |
+
for i, token in enumerate(s):
|
| 27 |
+
token = token.strip()
|
| 28 |
+
if token is None:
|
| 29 |
+
raise ValueError("Token on position %s is None" % i)
|
| 30 |
+
if token == "<g/>":
|
| 31 |
+
last_g = True
|
| 32 |
+
continue
|
| 33 |
+
elif token.startswith("<") and token.endswith(">"):
|
| 34 |
+
continue
|
| 35 |
+
else:
|
| 36 |
+
if last_g:
|
| 37 |
+
out_str += token
|
| 38 |
+
last_g = False
|
| 39 |
+
else:
|
| 40 |
+
out_str += " %s" % token
|
| 41 |
+
return out_str.strip()
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
out_dict = {}
|
| 45 |
+
|
| 46 |
+
for i, folder in enumerate(os.listdir(data_folder)):
|
| 47 |
+
try:
|
| 48 |
+
question_f = os.path.join(data_folder, folder, "01question.vert")
|
| 49 |
+
question_list = read_first_entries(question_f)
|
| 50 |
+
question_str = collect_tokens(question_list)
|
| 51 |
+
|
| 52 |
+
# reformulated answer selection
|
| 53 |
+
# answer_f = os.path.join(data_folder, folder, "02answer.vert")
|
| 54 |
+
# answer_list = read_first_entries(answer_f)
|
| 55 |
+
# # answer_df = pd.read_csv(answer_f, sep="\t", index_col=False)
|
| 56 |
+
# answer_str = collect_tokens(answer_list)
|
| 57 |
+
|
| 58 |
+
answer_f = os.path.join(data_folder, folder, "09answer_extraction.vert")
|
| 59 |
+
answer_list = read_first_entries(answer_f)
|
| 60 |
+
# answer_df = pd.read_csv(answer_f, sep="\t", index_col=False)
|
| 61 |
+
answer_str = collect_tokens(answer_list)
|
| 62 |
+
answer_str = answer_str.split(" # ")[0]
|
| 63 |
+
|
| 64 |
+
answer_type_f = os.path.join(data_folder, folder, "05metadata.txt")
|
| 65 |
+
answer_type = next(t for t in read_first_entries(answer_type_f) if "a_type" in t)
|
| 66 |
+
answer_type_cleaned = answer_type.replace("<a_type>", "").replace("</a_type>", "").strip()
|
| 67 |
+
|
| 68 |
+
text_f = os.path.join(data_folder, folder, "03text.vert")
|
| 69 |
+
text_list = read_first_entries(text_f)
|
| 70 |
+
# text_df = pd.read_csv(text_f, sep="\t", engine="python", error_bad_lines=False)
|
| 71 |
+
text_str = collect_tokens(text_list)
|
| 72 |
+
|
| 73 |
+
if answer_str.lower() not in text_str.lower():
|
| 74 |
+
print("Skipping answer %s: not present in context." % answer_str)
|
| 75 |
+
continue
|
| 76 |
+
|
| 77 |
+
if answer_str.endswith("."):
|
| 78 |
+
# to match in multi-sentence matching
|
| 79 |
+
answer_str = answer_str[:-1]
|
| 80 |
+
|
| 81 |
+
# maybe shorten to n-surrounding sentences
|
| 82 |
+
if shorten_to_sentences is not None:
|
| 83 |
+
sentences = text_str.split(". ")
|
| 84 |
+
answer_sentence_idx = next(i for i, _ in enumerate(sentences)
|
| 85 |
+
if all(a_segment.lower() in sentences[i+j].lower()
|
| 86 |
+
for j, a_segment in enumerate(answer_str.split(". "))))
|
| 87 |
+
shortened_context = sentences[max(0, answer_sentence_idx - shorten_to_sentences):
|
| 88 |
+
min(len(sentences), answer_sentence_idx + shorten_to_sentences)]
|
| 89 |
+
|
| 90 |
+
text_str = ". ".join(shortened_context) + ". "
|
| 91 |
+
|
| 92 |
+
# TODO: squad-like format: https://huggingface.co/datasets/squad
|
| 93 |
+
out_dict[i] = {"id": folder.split("/")[-1],
|
| 94 |
+
"answer_type": answer_type_cleaned,
|
| 95 |
+
"context": text_str,
|
| 96 |
+
"question": question_str,
|
| 97 |
+
"answers": {"text": [answer_str]}
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
except NotADirectoryError as e:
|
| 101 |
+
print("Skipping %s: %s: %s" % (i, folder, e))
|
| 102 |
+
|
| 103 |
+
with open(out_json, "w") as out_f:
|
| 104 |
+
out_f.write(json.dumps(out_dict))
|
| 105 |
+
|
| 106 |
+
print("Done. Output json exported to %s" % out_json)
|