garyzgao commited on
Commit
42ce2b7
·
verified ·
1 Parent(s): f30bfdb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -27
README.md CHANGED
@@ -26,8 +26,6 @@ The dataset used is provided by the Museum of London. The sherds dataset include
26
 
27
  ## Setup
28
 
29
- ##### a. Load dataset folder
30
-
31
  Step 1: Install the necessary libraries and items
32
 
33
  ```
@@ -67,31 +65,6 @@ Step 6: Inference.
67
  #Write inference code
68
  ```
69
 
70
- ##### b. Configure hyperparameters
71
-
72
- In the 'hyperparameters' section, there are several hypermaraters that can be configured.
73
-
74
- * epoch_num -> number of epochs
75
- * patience -> patience for early stopping (# of consecutive epochs where validation loss doesn't improve before training is broken)
76
- * val_interval -> frequency that the model is evaluated
77
- * alpha -> weighting for dice loss
78
- * beta -> weighting for cross-entropy (classification) loss
79
- * batch_size in train_dataloder -> training batch size
80
- * batch_size in val_dataloader -> validation batch size
81
- * lr in optimizer -> learning rate
82
-
83
- Hyperparameters for the model architecture:
84
-
85
- * encoder_name -> what encoder model we are using(usually set to resnet34).
86
- * encoder_weights -> weight initialization(can be set to either 'ImageNet' or 'Xavier').
87
-
88
- For dataset size:
89
-
90
- * The '[:some_number]' in the creating mask section -> cap on the number of samples per class
91
-
92
- ##### c. Run the code
93
-
94
- Click 'Runtime' -> 'Run all'.
95
 
96
  ## Model Architecture
97
 
 
26
 
27
  ## Setup
28
 
 
 
29
  Step 1: Install the necessary libraries and items
30
 
31
  ```
 
65
  #Write inference code
66
  ```
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
69
  ## Model Architecture
70