Commit
·
3bc06dc
1
Parent(s):
9557d41
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -1
- a2c-PandaReachDense-v2/data +35 -34
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +5 -5
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.61 +/- 0.19
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31100693d3985708b35da68392d9a65d9232de1cc301629c24a2e4b23390f539
|
3 |
+
size 108075
|
a2c-PandaReachDense-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -19,46 +19,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"observation_space": {
|
23 |
-
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
-
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
-
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
-
"_shape": null,
|
27 |
-
"dtype": null,
|
28 |
-
"_np_random": null
|
29 |
-
},
|
30 |
-
"action_space": {
|
31 |
-
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
-
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
-
"dtype": "float32",
|
34 |
-
"_shape": [
|
35 |
-
3
|
36 |
-
],
|
37 |
-
"low": "[-1. -1. -1.]",
|
38 |
-
"high": "[1. 1. 1.]",
|
39 |
-
"bounded_below": "[ True True True]",
|
40 |
-
"bounded_above": "[ True True True]",
|
41 |
-
"_np_random": null
|
42 |
-
},
|
43 |
-
"n_envs": 4,
|
44 |
"num_timesteps": 1000000,
|
45 |
"_total_timesteps": 1000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[ 0.
|
60 |
-
"desired_goal": "[[-
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,18 +44,19 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
"use_sde": false,
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
|
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
@@ -90,5 +69,27 @@
|
|
90 |
"ent_coef": 0.0,
|
91 |
"vf_coef": 0.5,
|
92 |
"max_grad_norm": 0.5,
|
93 |
-
"normalize_advantage": false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9962e04040>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9962dfa7c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"num_timesteps": 1000000,
|
23 |
"_total_timesteps": 1000000,
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1683519648767123556,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nJiv8TQU798ZFS/KUhPPtBstT6H9Na+kbe7vuZaoz8ANNm/hfFtPyGrvj+/u1i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]]",
|
38 |
+
"desired_goal": "[[-0.88456595 -0.82740426 -0.82965827]\n [ 0.2024237 0.3543458 -0.41983435]\n [-0.36663488 1.2762115 -1.6968994 ]\n [ 0.92946655 1.4895974 -0.8466148 ]]",
|
39 |
+
"observation": "[[ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoWP7vU8E8r0bAow+z82KPVaU273F4SI++setPVQGIzzo2Ik+QA+/PTLFFT7Ylpc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.12274862 -0.11817228 0.27345356]\n [ 0.06777536 -0.10721652 0.15906437]\n [ 0.08485408 0.00995024 0.269233 ]\n [ 0.09329081 0.14626005 0.07401818]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
"use_sde": false,
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7iQi/Isg5r+UhpRSlIwBbJRLMowBdJRHQKf4/oq0+kh1fZQoaAZoCWgPQwjww0FClO/yv5SGlFKUaBVLMmgWR0Cn+L42S+xodX2UKGgGaAloD0MIRbk0fuGV0r+UhpRSlGgVSzJoFkdAp/iAp8WsR3V9lChoBmgJaA9DCDFdiNUf4ei/lIaUUpRoFUsyaBZHQKf4P5UtI091fZQoaAZoCWgPQwjMsieBzTnkv5SGlFKUaBVLMmgWR0Cn+h/n4fwJdX2UKGgGaAloD0MI1cxaCkh76r+UhpRSlGgVSzJoFkdAp/nfk3juKHV9lChoBmgJaA9DCPbTf9b8+N+/lIaUUpRoFUsyaBZHQKf5oep4rz51fZQoaAZoCWgPQwg0R1Z+GYzvv5SGlFKUaBVLMmgWR0Cn+WDzyz5XdX2UKGgGaAloD0MIH/KWqx8b4L+UhpRSlGgVSzJoFkdAp/s3BnBciXV9lChoBmgJaA9DCCECDqFKjfC/lIaUUpRoFUsyaBZHQKf69tIClrN1fZQoaAZoCWgPQwgs8BXdek3fv5SGlFKUaBVLMmgWR0Cn+rk/r0J4dX2UKGgGaAloD0MIADlhwmhW3b+UhpRSlGgVSzJoFkdAp/p4Tj/+9HV9lChoBmgJaA9DCDqWd9UD5vq/lIaUUpRoFUsyaBZHQKf8T+Lm6oV1fZQoaAZoCWgPQwgdVU0QdZ/kv5SGlFKUaBVLMmgWR0Cn/A+kgwGodX2UKGgGaAloD0MIRkQxeQNM5L+UhpRSlGgVSzJoFkdAp/vSD0163XV9lChoBmgJaA9DCDY8vVKWIeC/lIaUUpRoFUsyaBZHQKf7kRqXWvt1fZQoaAZoCWgPQwgSM/s8Rnnkv5SGlFKUaBVLMmgWR0Cn/Wh7E5yVdX2UKGgGaAloD0MIj+OHSiNm5b+UhpRSlGgVSzJoFkdAp/0oLmZE2HV9lChoBmgJaA9DCDhnRGlv8N2/lIaUUpRoFUsyaBZHQKf86rTYukF1fZQoaAZoCWgPQwirWWd8X9znv5SGlFKUaBVLMmgWR0Cn/KnDBMzudX2UKGgGaAloD0MIJLcm3ZZI6r+UhpRSlGgVSzJoFkdAp/6LWEsasXV9lChoBmgJaA9DCG8QrRVtDu+/lIaUUpRoFUsyaBZHQKf+SxBVuJl1fZQoaAZoCWgPQwi62R8ot23qv5SGlFKUaBVLMmgWR0Cn/g1tGd7OdX2UKGgGaAloD0MIHm0csRaf87+UhpRSlGgVSzJoFkdAp/3MZ1mrbXV9lChoBmgJaA9DCHbEIRtIl+C/lIaUUpRoFUsyaBZHQKf/pidat9x1fZQoaAZoCWgPQwjcnEoGgKriv5SGlFKUaBVLMmgWR0Cn/2XaBZp0dX2UKGgGaAloD0MIQSrFjsYh4b+UhpRSlGgVSzJoFkdAp/8oLb5/LHV9lChoBmgJaA9DCFHc8Sa/ReO/lIaUUpRoFUsyaBZHQKf+5zxwyZd1fZQoaAZoCWgPQwgBbhYvFgbuv5SGlFKUaBVLMmgWR0CoAMALy+YddX2UKGgGaAloD0MIWTUIc7tX8L+UhpRSlGgVSzJoFkdAqACAFC9h7XV9lChoBmgJaA9DCDyFXKlnwfG/lIaUUpRoFUsyaBZHQKgAQkVN5+p1fZQoaAZoCWgPQwgYIqev52vRv5SGlFKUaBVLMmgWR0CoAAFKK509dX2UKGgGaAloD0MIK01KQbeX6r+UhpRSlGgVSzJoFkdAqAHkoUi6hHV9lChoBmgJaA9DCMIyNnSzP+i/lIaUUpRoFUsyaBZHQKgBpFAmiQF1fZQoaAZoCWgPQwglrfiGwufpv5SGlFKUaBVLMmgWR0CoAWa1b7j1dX2UKGgGaAloD0MIwCFUqdmD5b+UhpRSlGgVSzJoFkdAqAEloYekpXV9lChoBmgJaA9DCNOE7SdjfNi/lIaUUpRoFUsyaBZHQKgDfeBQN1B1fZQoaAZoCWgPQwgbZ9MRwE3lv5SGlFKUaBVLMmgWR0CoAz6ol2NedX2UKGgGaAloD0MISkT4F0Fj2r+UhpRSlGgVSzJoFkdAqAMB/smfG3V9lChoBmgJaA9DCP9Cjxg9t+K/lIaUUpRoFUsyaBZHQKgCwfapPyl1fZQoaAZoCWgPQwiaX80Bgrnnv5SGlFKUaBVLMmgWR0CoBUQOWjXWdX2UKGgGaAloD0MIe/oI/OHn37+UhpRSlGgVSzJoFkdAqAUEm+j/MnV9lChoBmgJaA9DCBKj5xa6EuK/lIaUUpRoFUsyaBZHQKgEx+717IF1fZQoaAZoCWgPQwjqdvaVB2nkv5SGlFKUaBVLMmgWR0CoBIfhddE9dX2UKGgGaAloD0MIIeS8/48T2L+UhpRSlGgVSzJoFkdAqAcXXoTwlXV9lChoBmgJaA9DCCKKyRtg5uq/lIaUUpRoFUsyaBZHQKgG19Oymhx1fZQoaAZoCWgPQwiC5J1DGarfv5SGlFKUaBVLMmgWR0CoBpr9l2/0dX2UKGgGaAloD0MIdQKaCBse4r+UhpRSlGgVSzJoFkdAqAZa5Xlr/XV9lChoBmgJaA9DCBuADYgQV96/lIaUUpRoFUsyaBZHQKgJFpYcNpd1fZQoaAZoCWgPQwiDiNS0i2ncv5SGlFKUaBVLMmgWR0CoCNc274BWdX2UKGgGaAloD0MIxTpVvmek5L+UhpRSlGgVSzJoFkdAqAiar/82rHV9lChoBmgJaA9DCL5p+uyA6+W/lIaUUpRoFUsyaBZHQKgIWqU/wAl1fZQoaAZoCWgPQwgVOxqH+l3fv5SGlFKUaBVLMmgWR0CoCxZxJd0JdX2UKGgGaAloD0MIWDm0yHa+1b+UhpRSlGgVSzJoFkdAqArXVZs9CHV9lChoBmgJaA9DCHKkMzDysui/lIaUUpRoFUsyaBZHQKgKmsvIwM91fZQoaAZoCWgPQwjWc9L7xtfjv5SGlFKUaBVLMmgWR0CoClrUCq6wdX2UKGgGaAloD0MITFDDt7Bu6b+UhpRSlGgVSzJoFkdAqA0R+QU5/HV9lChoBmgJaA9DCDNS76mc9t2/lIaUUpRoFUsyaBZHQKgM0tbLU1B1fZQoaAZoCWgPQwgzG2SSkbPmv5SGlFKUaBVLMmgWR0CoDJZQgs9TdX2UKGgGaAloD0MIllzF4jeF37+UhpRSlGgVSzJoFkdAqAxV4eLeh3V9lChoBmgJaA9DCLnH0ocuqM+/lIaUUpRoFUsyaBZHQKgOdz19ORF1fZQoaAZoCWgPQwgj+N9Kduzgv5SGlFKUaBVLMmgWR0CoDjbuDzy0dX2UKGgGaAloD0MI2GX4TzdQ1r+UhpRSlGgVSzJoFkdAqA35N0vGqHV9lChoBmgJaA9DCGByo8haQ96/lIaUUpRoFUsyaBZHQKgNuEFGG211fZQoaAZoCWgPQwjQmh9/aVHsv5SGlFKUaBVLMmgWR0CoD8NRFZxJdX2UKGgGaAloD0MI4QfnU8eq5L+UhpRSlGgVSzJoFkdAqA+DFjurqHV9lChoBmgJaA9DCCjyJOmaydS/lIaUUpRoFUsyaBZHQKgPRXDm8ul1fZQoaAZoCWgPQwjyDBr6Jzjuv5SGlFKUaBVLMmgWR0CoDwS0BwMqdX2UKGgGaAloD0MIw3+6gQIv8r+UhpRSlGgVSzJoFkdAqBDpn6Eal3V9lChoBmgJaA9DCLKACdy6W/G/lIaUUpRoFUsyaBZHQKgQqVKPGQ11fZQoaAZoCWgPQwhbCHJQwkzjv5SGlFKUaBVLMmgWR0CoEGvGQ0XQdX2UKGgGaAloD0MI6dUApaFG3b+UhpRSlGgVSzJoFkdAqBAqzeGfw3V9lChoBmgJaA9DCGhAvRk13+S/lIaUUpRoFUsyaBZHQKgSB7OVxCJ1fZQoaAZoCWgPQwinrRHBODjuv5SGlFKUaBVLMmgWR0CoEcd3r2QGdX2UKGgGaAloD0MIWyVYHM787b+UhpRSlGgVSzJoFkdAqBGJyS3b23V9lChoBmgJaA9DCClbJO1GH+S/lIaUUpRoFUsyaBZHQKgRSOZLIxR1fZQoaAZoCWgPQwhb7WEvFLDmv5SGlFKUaBVLMmgWR0CoEylwT/Q0dX2UKGgGaAloD0MIP1QaMbPP47+UhpRSlGgVSzJoFkdAqBLpUBGQS3V9lChoBmgJaA9DCDAS2nIuReW/lIaUUpRoFUsyaBZHQKgSq53C9AZ1fZQoaAZoCWgPQwjJc30fDpLsv5SGlFKUaBVLMmgWR0CoEmqeTV2BdX2UKGgGaAloD0MIrrg4KjcR8L+UhpRSlGgVSzJoFkdAqBRDcmBvrHV9lChoBmgJaA9DCLe3W5IDduC/lIaUUpRoFUsyaBZHQKgUAx8lXzV1fZQoaAZoCWgPQwi78lmeB3fmv5SGlFKUaBVLMmgWR0CoE8Vo6CDmdX2UKGgGaAloD0MIqyAGuvaF57+UhpRSlGgVSzJoFkdAqBOEVBUrCnV9lChoBmgJaA9DCNEksaTcfem/lIaUUpRoFUsyaBZHQKgVZLQHAyp1fZQoaAZoCWgPQwgVqTC2EOTav5SGlFKUaBVLMmgWR0CoFSRqwhW6dX2UKGgGaAloD0MIpFLsaBzq1L+UhpRSlGgVSzJoFkdAqBTmskpqh3V9lChoBmgJaA9DCCY2H9eGiuG/lIaUUpRoFUsyaBZHQKgUpah6By11fZQoaAZoCWgPQwiug4O9iSHlv5SGlFKUaBVLMmgWR0CoFngLiMo+dX2UKGgGaAloD0MIBdzz/Gmj0L+UhpRSlGgVSzJoFkdAqBY3wqiGnHV9lChoBmgJaA9DCF4R/G8lu++/lIaUUpRoFUsyaBZHQKgV+h24d6t1fZQoaAZoCWgPQwhrgT0mUhrnv5SGlFKUaBVLMmgWR0CoFbkWykbhdX2UKGgGaAloD0MIZaa0/pYA6b+UhpRSlGgVSzJoFkdAqBeuLYPGyXV9lChoBmgJaA9DCFb18jtNZua/lIaUUpRoFUsyaBZHQKgXbnfVI7N1fZQoaAZoCWgPQwiTq1j8prDYv5SGlFKUaBVLMmgWR0CoFzEnb7CSdX2UKGgGaAloD0MI+rmhKTv95r+UhpRSlGgVSzJoFkdAqBbwqTbFj3V9lChoBmgJaA9DCFaZKa2/Jdi/lIaUUpRoFUsyaBZHQKgY0biIcip1fZQoaAZoCWgPQwjAP6VKlL3fv5SGlFKUaBVLMmgWR0CoGJGvOhTPdX2UKGgGaAloD0MIlE+PbRlw4L+UhpRSlGgVSzJoFkdAqBhUDW9UTHV9lChoBmgJaA9DCPsGJjeKrNi/lIaUUpRoFUsyaBZHQKgYExs2vSt1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5879c60cf6d614fc22a7d418544635cb060729f38aa8daebe258ce8fbbb493fc
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:774b5739347c5a2c0f42754e87fed7d9eade503373275daeed8b4aef16d460b6
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
- Python: 3.
|
3 |
-
- Stable-Baselines3: 1.
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbfca063ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbfca05bc90>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674652375012519887, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA3gvWPgFkCL2N/g0/3gvWPgFkCL2N/g0/3gvWPgFkCL2N/g0/3gvWPgFkCL2N/g0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+A3Lv/51PT/qMuC9V6tNP/4dtT+JcqI/ut6vP13xlr9t3Z6+ejC5P2Erez97kVU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADeC9Y+AWQIvY3+DT9PlAE8XjKau1k6wrreC9Y+AWQIvY3+DT9PlAE8XjKau1k6wrreC9Y+AWQIvY3+DT9PlAE8XjKau1k6wrreC9Y+AWQIvY3+DT9PlAE8XjKau1k6wrqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4180593 -0.0332985 0.5546654]\n [ 0.4180593 -0.0332985 0.5546654]\n [ 0.4180593 -0.0332985 0.5546654]\n [ 0.4180593 -0.0332985 0.5546654]]", "desired_goal": "[[-1.5863638 0.74008167 -0.10947211]\n [ 0.8033957 1.4149778 1.2691203 ]\n [ 1.3739846 -1.1792408 -0.3102831 ]\n [ 1.4467919 0.98113066 0.8342511 ]]", "observation": "[[ 0.4180593 -0.0332985 0.5546654 0.00790889 -0.00470571 -0.00148184]\n [ 0.4180593 -0.0332985 0.5546654 0.00790889 -0.00470571 -0.00148184]\n [ 0.4180593 -0.0332985 0.5546654 0.00790889 -0.00470571 -0.00148184]\n [ 0.4180593 -0.0332985 0.5546654 0.00790889 -0.00470571 -0.00148184]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAARskXPK2YNb2uPZY+0LU9PfcB97urGz4+hKEQvWl6rj0g9wM+mYnWPB3o/b2R2SQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0092643 -0.04433506 0.29343933]\n [ 0.04631597 -0.00753808 0.18565242]\n [-0.03531028 0.08519442 0.1288724 ]\n [ 0.02618866 -0.12397788 0.1609862 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyAc9m1XvF8CUhpRSlIwBbJRLMowBdJRHQKWasRigCfZ1fZQoaAZoCWgPQwh9Wdqpudz4v5SGlFKUaBVLMmgWR0ClmnQaJhvzdX2UKGgGaAloD0MISguXVdhcF8CUhpRSlGgVSzJoFkdApZo4oJAt4HV9lChoBmgJaA9DCGiSWFLuHhbAlIaUUpRoFUsyaBZHQKWZ+mFajet1fZQoaAZoCWgPQwietkYE45AQwJSGlFKUaBVLMmgWR0Clm9we3hGZdX2UKGgGaAloD0MI8ztNZrxtAcCUhpRSlGgVSzJoFkdApZue6oVEeHV9lChoBmgJaA9DCPlKICV2zQfAlIaUUpRoFUsyaBZHQKWbYnuy/sV1fZQoaAZoCWgPQwh9XvHUI+0IwJSGlFKUaBVLMmgWR0ClmyRQzk6tdX2UKGgGaAloD0MI7wOQ2sQpBMCUhpRSlGgVSzJoFkdApZz8IX0oSnV9lChoBmgJaA9DCHcU56ijI/a/lIaUUpRoFUsyaBZHQKWcvv863iJ1fZQoaAZoCWgPQwjD1JY6yOvqv5SGlFKUaBVLMmgWR0ClnIKmCROldX2UKGgGaAloD0MIlPjcCfb/EMCUhpRSlGgVSzJoFkdApZxEbaRISXV9lChoBmgJaA9DCLVv7q8etxjAlIaUUpRoFUsyaBZHQKWeHcynDSB1fZQoaAZoCWgPQwgk1Xd+UfIUwJSGlFKUaBVLMmgWR0ClneCLMs6JdX2UKGgGaAloD0MIgsgiTbwDDMCUhpRSlGgVSzJoFkdApZ2kGiYb83V9lChoBmgJaA9DCKfMzTei++W/lIaUUpRoFUsyaBZHQKWdZeKKpDN1fZQoaAZoCWgPQwivljszwTD3v5SGlFKUaBVLMmgWR0Cln0IK2KEWdX2UKGgGaAloD0MI0Chd+pck67+UhpRSlGgVSzJoFkdApZ8Eth/iHnV9lChoBmgJaA9DCDRMbamDvALAlIaUUpRoFUsyaBZHQKWeyEM9bHJ1fZQoaAZoCWgPQwifOetTjqkBwJSGlFKUaBVLMmgWR0ClnooeHSF5dX2UKGgGaAloD0MI2GK3zyqTDsCUhpRSlGgVSzJoFkdApaBspXp4bHV9lChoBmgJaA9DCL0eTIqPTxHAlIaUUpRoFUsyaBZHQKWgL3V09yN1fZQoaAZoCWgPQwiifEELCRgDwJSGlFKUaBVLMmgWR0Cln/MZ5zHTdX2UKGgGaAloD0MInUoGgCruAcCUhpRSlGgVSzJoFkdApZ+08eS0SnV9lChoBmgJaA9DCKdB0TyAZQjAlIaUUpRoFUsyaBZHQKWhl/WDpTx1fZQoaAZoCWgPQwhAaahRSDLhv5SGlFKUaBVLMmgWR0CloVrbYbsGdX2UKGgGaAloD0MIWYejq3R337+UhpRSlGgVSzJoFkdApaEeUhV2inV9lChoBmgJaA9DCL3jFB3JhQ3AlIaUUpRoFUsyaBZHQKWg3/oaDPJ1fZQoaAZoCWgPQwh6UbtfBcgUwJSGlFKUaBVLMmgWR0Clor4L1EmZdX2UKGgGaAloD0MILbKd76eGF8CUhpRSlGgVSzJoFkdApaKAxFiKBXV9lChoBmgJaA9DCN6Th4Va0/C/lIaUUpRoFUsyaBZHQKWiRGXokiV1fZQoaAZoCWgPQwgJ4jycwDQCwJSGlFKUaBVLMmgWR0ClogZLZi/gdX2UKGgGaAloD0MI8KXwoNmlF8CUhpRSlGgVSzJoFkdApaQT0z0pVnV9lChoBmgJaA9DCMKiIk4nmf+/lIaUUpRoFUsyaBZHQKWj1p22Xsx1fZQoaAZoCWgPQwh3Loz0opYLwJSGlFKUaBVLMmgWR0Clo5so2GZedX2UKGgGaAloD0MIY+3vbI/+BsCUhpRSlGgVSzJoFkdApaNdEPUaynV9lChoBmgJaA9DCI8YPbfQNQ/AlIaUUpRoFUsyaBZHQKWlPtXPqs51fZQoaAZoCWgPQwjvU1VoINYXwJSGlFKUaBVLMmgWR0ClpQKEvkBCdX2UKGgGaAloD0MImNpSB3ldC8CUhpRSlGgVSzJoFkdApaTG3c580HV9lChoBmgJaA9DCEZgrG9g8uq/lIaUUpRoFUsyaBZHQKWkiWYWtU51fZQoaAZoCWgPQwiBIatbPf8gwJSGlFKUaBVLMmgWR0ClpmFb/wRXdX2UKGgGaAloD0MIbTfBN00fGsCUhpRSlGgVSzJoFkdApaYkFhXr+3V9lChoBmgJaA9DCC3RWWYR+hXAlIaUUpRoFUsyaBZHQKWl59Dx9Xt1fZQoaAZoCWgPQwjuBtFa0YYCwJSGlFKUaBVLMmgWR0Clpald1MdtdX2UKGgGaAloD0MItWtCWmMwBcCUhpRSlGgVSzJoFkdApaexGx2SuHV9lChoBmgJaA9DCBVzEHS06vu/lIaUUpRoFUsyaBZHQKWnc+RoysV1fZQoaAZoCWgPQwgh5Lz/j5P/v5SGlFKUaBVLMmgWR0ClpzeNDMNddX2UKGgGaAloD0MIbk+Q2O5eD8CUhpRSlGgVSzJoFkdApab5SWJJoXV9lChoBmgJaA9DCMeA7PXuz/C/lIaUUpRoFUsyaBZHQKWo0TWXkYJ1fZQoaAZoCWgPQwgyIeaSqo0NwJSGlFKUaBVLMmgWR0ClqJQbMotudX2UKGgGaAloD0MIV87eGW1lHMCUhpRSlGgVSzJoFkdApahXhsImgXV9lChoBmgJaA9DCKiPwB9+bhrAlIaUUpRoFUsyaBZHQKWoGUX531V1fZQoaAZoCWgPQwgtX5fhP20awJSGlFKUaBVLMmgWR0Clqfp/PPcBdX2UKGgGaAloD0MIfCqnPSUnBMCUhpRSlGgVSzJoFkdApam9YSxqwnV9lChoBmgJaA9DCKZHUz2Zfw/AlIaUUpRoFUsyaBZHQKWpgPf8/EB1fZQoaAZoCWgPQwjXEvJBzwYawJSGlFKUaBVLMmgWR0ClqUKk/KQrdX2UKGgGaAloD0MIQuxMofM6G8CUhpRSlGgVSzJoFkdApas2twJgLXV9lChoBmgJaA9DCDSCjevfdf+/lIaUUpRoFUsyaBZHQKWq+d8Rcu91fZQoaAZoCWgPQwgeGhajrgURwJSGlFKUaBVLMmgWR0Clqr21MM7VdX2UKGgGaAloD0MI3qtWJvxyJMCUhpRSlGgVSzJoFkdApaqAmmce83V9lChoBmgJaA9DCPrwLEFGgPe/lIaUUpRoFUsyaBZHQKWsdot+TeR1fZQoaAZoCWgPQwjWx0Pf3TolwJSGlFKUaBVLMmgWR0ClrDqKP4mDdX2UKGgGaAloD0MIR450BkYOF8CUhpRSlGgVSzJoFkdApav+Y2Kl6HV9lChoBmgJaA9DCBu+hXXjbRDAlIaUUpRoFUsyaBZHQKWrwGY8dPt1fZQoaAZoCWgPQwiQTIdOz3sTwJSGlFKUaBVLMmgWR0Clra3bM5fddX2UKGgGaAloD0MIEYqtoGnpC8CUhpRSlGgVSzJoFkdApa1wuyu6mXV9lChoBmgJaA9DCN82UyEecSTAlIaUUpRoFUsyaBZHQKWtNE9+w1R1fZQoaAZoCWgPQwhY4ZaPpMQEwJSGlFKUaBVLMmgWR0ClrPX/giu/dX2UKGgGaAloD0MITPxR1JlLGsCUhpRSlGgVSzJoFkdApa7URnOB2HV9lChoBmgJaA9DCKMiTifZSgPAlIaUUpRoFUsyaBZHQKWumCyyD7J1fZQoaAZoCWgPQwhoy7kUVxUGwJSGlFKUaBVLMmgWR0ClrlxKYiPidX2UKGgGaAloD0MIq7GEtTFGFsCUhpRSlGgVSzJoFkdApa4eCwr1/XV9lChoBmgJaA9DCE8eFmpNAxLAlIaUUpRoFUsyaBZHQKWwA6aLGaR1fZQoaAZoCWgPQwge39416BsZwJSGlFKUaBVLMmgWR0Clr8aEal1sdX2UKGgGaAloD0MIcmw9QzjGDMCUhpRSlGgVSzJoFkdApa+KDK5kLHV9lChoBmgJaA9DCGCSyhRzEBHAlIaUUpRoFUsyaBZHQKWvS6mO2iN1fZQoaAZoCWgPQwjRlnMprmr6v5SGlFKUaBVLMmgWR0ClsSVwHZ9NdX2UKGgGaAloD0MIkpbK2xH+HcCUhpRSlGgVSzJoFkdApbDoTEit73V9lChoBmgJaA9DCLywNVt5WRTAlIaUUpRoFUsyaBZHQKWwq/20zCV1fZQoaAZoCWgPQwhy++WTFQMCwJSGlFKUaBVLMmgWR0ClsG22gFotdX2UKGgGaAloD0MI7GrylNV09r+UhpRSlGgVSzJoFkdApbJxdWyTp3V9lChoBmgJaA9DCHy5T44CpBHAlIaUUpRoFUsyaBZHQKWyNE5Qxet1fZQoaAZoCWgPQwgxQni0ccQUwJSGlFKUaBVLMmgWR0Clsfi4BmwrdX2UKGgGaAloD0MIwvaTMT5MC8CUhpRSlGgVSzJoFkdApbG6eNDMNnV9lChoBmgJaA9DCI5zm3CvrA/AlIaUUpRoFUsyaBZHQKWzoZhKDkF1fZQoaAZoCWgPQwjek4eFWhMHwJSGlFKUaBVLMmgWR0Cls2R02cawdX2UKGgGaAloD0MIAcEcPX7PGcCUhpRSlGgVSzJoFkdApbMoFX7tRnV9lChoBmgJaA9DCIeGxahrLRDAlIaUUpRoFUsyaBZHQKWy6cIZ62R1fZQoaAZoCWgPQwjWj03yI94TwJSGlFKUaBVLMmgWR0CltL1OsT37dX2UKGgGaAloD0MI9katMH0fGcCUhpRSlGgVSzJoFkdApbR//R3NcHV9lChoBmgJaA9DCPmgZ7PqUwvAlIaUUpRoFUsyaBZHQKW0Q4p+c6N1fZQoaAZoCWgPQwjNy2H3HQMCwJSGlFKUaBVLMmgWR0CltAVHvttzdX2UKGgGaAloD0MI4stEEVL3+7+UhpRSlGgVSzJoFkdApbXkDW9UTHV9lChoBmgJaA9DCIsZ4e1B6AbAlIaUUpRoFUsyaBZHQKW1pswco6V1fZQoaAZoCWgPQwhIqBlSReEQwJSGlFKUaBVLMmgWR0CltWpv5xiodX2UKGgGaAloD0MIh+C4jJsaD8CUhpRSlGgVSzJoFkdApbUr+NtIkXV9lChoBmgJaA9DCPZ8zXLZiA3AlIaUUpRoFUsyaBZHQKW3Cg7HQyB1fZQoaAZoCWgPQwipFDsahzr6v5SGlFKUaBVLMmgWR0CltszEaVD8dX2UKGgGaAloD0MISS2UTE7t5b+UhpRSlGgVSzJoFkdApbaQWUKRdXV9lChoBmgJaA9DCC/E6o8wvCLAlIaUUpRoFUsyaBZHQKW2UgDifg91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f9962e04040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9962dfa7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683519648767123556, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/nJDePpjoGrxWQxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6nJiv8TQU798ZFS/KUhPPtBstT6H9Na+kbe7vuZaoz8ANNm/hfFtPyGrvj+/u1i/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buckN4+mOgavFZDFD9tcoW7SQHXujfS2buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]\n [ 0.43469703 -0.00945487 0.57915246]]", "desired_goal": "[[-0.88456595 -0.82740426 -0.82965827]\n [ 0.2024237 0.3543458 -0.41983435]\n [-0.36663488 1.2762115 -1.6968994 ]\n [ 0.92946655 1.4895974 -0.8466148 ]]", "observation": "[[ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]\n [ 0.43469703 -0.00945487 0.57915246 -0.00407248 -0.00164036 -0.00664737]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAoWP7vU8E8r0bAow+z82KPVaU273F4SI++setPVQGIzzo2Ik+QA+/PTLFFT7Ylpc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12274862 -0.11817228 0.27345356]\n [ 0.06777536 -0.10721652 0.15906437]\n [ 0.08485408 0.00995024 0.269233 ]\n [ 0.09329081 0.14626005 0.07401818]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7iQi/Isg5r+UhpRSlIwBbJRLMowBdJRHQKf4/oq0+kh1fZQoaAZoCWgPQwjww0FClO/yv5SGlFKUaBVLMmgWR0Cn+L42S+xodX2UKGgGaAloD0MIRbk0fuGV0r+UhpRSlGgVSzJoFkdAp/iAp8WsR3V9lChoBmgJaA9DCDFdiNUf4ei/lIaUUpRoFUsyaBZHQKf4P5UtI091fZQoaAZoCWgPQwjMsieBzTnkv5SGlFKUaBVLMmgWR0Cn+h/n4fwJdX2UKGgGaAloD0MI1cxaCkh76r+UhpRSlGgVSzJoFkdAp/nfk3juKHV9lChoBmgJaA9DCPbTf9b8+N+/lIaUUpRoFUsyaBZHQKf5oep4rz51fZQoaAZoCWgPQwg0R1Z+GYzvv5SGlFKUaBVLMmgWR0Cn+WDzyz5XdX2UKGgGaAloD0MIH/KWqx8b4L+UhpRSlGgVSzJoFkdAp/s3BnBciXV9lChoBmgJaA9DCCECDqFKjfC/lIaUUpRoFUsyaBZHQKf69tIClrN1fZQoaAZoCWgPQwgs8BXdek3fv5SGlFKUaBVLMmgWR0Cn+rk/r0J4dX2UKGgGaAloD0MIADlhwmhW3b+UhpRSlGgVSzJoFkdAp/p4Tj/+9HV9lChoBmgJaA9DCDqWd9UD5vq/lIaUUpRoFUsyaBZHQKf8T+Lm6oV1fZQoaAZoCWgPQwgdVU0QdZ/kv5SGlFKUaBVLMmgWR0Cn/A+kgwGodX2UKGgGaAloD0MIRkQxeQNM5L+UhpRSlGgVSzJoFkdAp/vSD0163XV9lChoBmgJaA9DCDY8vVKWIeC/lIaUUpRoFUsyaBZHQKf7kRqXWvt1fZQoaAZoCWgPQwgSM/s8Rnnkv5SGlFKUaBVLMmgWR0Cn/Wh7E5yVdX2UKGgGaAloD0MIj+OHSiNm5b+UhpRSlGgVSzJoFkdAp/0oLmZE2HV9lChoBmgJaA9DCDhnRGlv8N2/lIaUUpRoFUsyaBZHQKf86rTYukF1fZQoaAZoCWgPQwirWWd8X9znv5SGlFKUaBVLMmgWR0Cn/KnDBMzudX2UKGgGaAloD0MIJLcm3ZZI6r+UhpRSlGgVSzJoFkdAp/6LWEsasXV9lChoBmgJaA9DCG8QrRVtDu+/lIaUUpRoFUsyaBZHQKf+SxBVuJl1fZQoaAZoCWgPQwi62R8ot23qv5SGlFKUaBVLMmgWR0Cn/g1tGd7OdX2UKGgGaAloD0MIHm0csRaf87+UhpRSlGgVSzJoFkdAp/3MZ1mrbXV9lChoBmgJaA9DCHbEIRtIl+C/lIaUUpRoFUsyaBZHQKf/pidat9x1fZQoaAZoCWgPQwjcnEoGgKriv5SGlFKUaBVLMmgWR0Cn/2XaBZp0dX2UKGgGaAloD0MIQSrFjsYh4b+UhpRSlGgVSzJoFkdAp/8oLb5/LHV9lChoBmgJaA9DCFHc8Sa/ReO/lIaUUpRoFUsyaBZHQKf+5zxwyZd1fZQoaAZoCWgPQwgBbhYvFgbuv5SGlFKUaBVLMmgWR0CoAMALy+YddX2UKGgGaAloD0MIWTUIc7tX8L+UhpRSlGgVSzJoFkdAqACAFC9h7XV9lChoBmgJaA9DCDyFXKlnwfG/lIaUUpRoFUsyaBZHQKgAQkVN5+p1fZQoaAZoCWgPQwgYIqev52vRv5SGlFKUaBVLMmgWR0CoAAFKK509dX2UKGgGaAloD0MIK01KQbeX6r+UhpRSlGgVSzJoFkdAqAHkoUi6hHV9lChoBmgJaA9DCMIyNnSzP+i/lIaUUpRoFUsyaBZHQKgBpFAmiQF1fZQoaAZoCWgPQwglrfiGwufpv5SGlFKUaBVLMmgWR0CoAWa1b7j1dX2UKGgGaAloD0MIwCFUqdmD5b+UhpRSlGgVSzJoFkdAqAEloYekpXV9lChoBmgJaA9DCNOE7SdjfNi/lIaUUpRoFUsyaBZHQKgDfeBQN1B1fZQoaAZoCWgPQwgbZ9MRwE3lv5SGlFKUaBVLMmgWR0CoAz6ol2NedX2UKGgGaAloD0MISkT4F0Fj2r+UhpRSlGgVSzJoFkdAqAMB/smfG3V9lChoBmgJaA9DCP9Cjxg9t+K/lIaUUpRoFUsyaBZHQKgCwfapPyl1fZQoaAZoCWgPQwiaX80Bgrnnv5SGlFKUaBVLMmgWR0CoBUQOWjXWdX2UKGgGaAloD0MIe/oI/OHn37+UhpRSlGgVSzJoFkdAqAUEm+j/MnV9lChoBmgJaA9DCBKj5xa6EuK/lIaUUpRoFUsyaBZHQKgEx+717IF1fZQoaAZoCWgPQwjqdvaVB2nkv5SGlFKUaBVLMmgWR0CoBIfhddE9dX2UKGgGaAloD0MIIeS8/48T2L+UhpRSlGgVSzJoFkdAqAcXXoTwlXV9lChoBmgJaA9DCCKKyRtg5uq/lIaUUpRoFUsyaBZHQKgG19Oymhx1fZQoaAZoCWgPQwiC5J1DGarfv5SGlFKUaBVLMmgWR0CoBpr9l2/0dX2UKGgGaAloD0MIdQKaCBse4r+UhpRSlGgVSzJoFkdAqAZa5Xlr/XV9lChoBmgJaA9DCBuADYgQV96/lIaUUpRoFUsyaBZHQKgJFpYcNpd1fZQoaAZoCWgPQwiDiNS0i2ncv5SGlFKUaBVLMmgWR0CoCNc274BWdX2UKGgGaAloD0MIxTpVvmek5L+UhpRSlGgVSzJoFkdAqAiar/82rHV9lChoBmgJaA9DCL5p+uyA6+W/lIaUUpRoFUsyaBZHQKgIWqU/wAl1fZQoaAZoCWgPQwgVOxqH+l3fv5SGlFKUaBVLMmgWR0CoCxZxJd0JdX2UKGgGaAloD0MIWDm0yHa+1b+UhpRSlGgVSzJoFkdAqArXVZs9CHV9lChoBmgJaA9DCHKkMzDysui/lIaUUpRoFUsyaBZHQKgKmsvIwM91fZQoaAZoCWgPQwjWc9L7xtfjv5SGlFKUaBVLMmgWR0CoClrUCq6wdX2UKGgGaAloD0MITFDDt7Bu6b+UhpRSlGgVSzJoFkdAqA0R+QU5/HV9lChoBmgJaA9DCDNS76mc9t2/lIaUUpRoFUsyaBZHQKgM0tbLU1B1fZQoaAZoCWgPQwgzG2SSkbPmv5SGlFKUaBVLMmgWR0CoDJZQgs9TdX2UKGgGaAloD0MIllzF4jeF37+UhpRSlGgVSzJoFkdAqAxV4eLeh3V9lChoBmgJaA9DCLnH0ocuqM+/lIaUUpRoFUsyaBZHQKgOdz19ORF1fZQoaAZoCWgPQwgj+N9Kduzgv5SGlFKUaBVLMmgWR0CoDjbuDzy0dX2UKGgGaAloD0MI2GX4TzdQ1r+UhpRSlGgVSzJoFkdAqA35N0vGqHV9lChoBmgJaA9DCGByo8haQ96/lIaUUpRoFUsyaBZHQKgNuEFGG211fZQoaAZoCWgPQwjQmh9/aVHsv5SGlFKUaBVLMmgWR0CoD8NRFZxJdX2UKGgGaAloD0MI4QfnU8eq5L+UhpRSlGgVSzJoFkdAqA+DFjurqHV9lChoBmgJaA9DCCjyJOmaydS/lIaUUpRoFUsyaBZHQKgPRXDm8ul1fZQoaAZoCWgPQwjyDBr6Jzjuv5SGlFKUaBVLMmgWR0CoDwS0BwMqdX2UKGgGaAloD0MIw3+6gQIv8r+UhpRSlGgVSzJoFkdAqBDpn6Eal3V9lChoBmgJaA9DCLKACdy6W/G/lIaUUpRoFUsyaBZHQKgQqVKPGQ11fZQoaAZoCWgPQwhbCHJQwkzjv5SGlFKUaBVLMmgWR0CoEGvGQ0XQdX2UKGgGaAloD0MI6dUApaFG3b+UhpRSlGgVSzJoFkdAqBAqzeGfw3V9lChoBmgJaA9DCGhAvRk13+S/lIaUUpRoFUsyaBZHQKgSB7OVxCJ1fZQoaAZoCWgPQwinrRHBODjuv5SGlFKUaBVLMmgWR0CoEcd3r2QGdX2UKGgGaAloD0MIWyVYHM787b+UhpRSlGgVSzJoFkdAqBGJyS3b23V9lChoBmgJaA9DCClbJO1GH+S/lIaUUpRoFUsyaBZHQKgRSOZLIxR1fZQoaAZoCWgPQwhb7WEvFLDmv5SGlFKUaBVLMmgWR0CoEylwT/Q0dX2UKGgGaAloD0MIP1QaMbPP47+UhpRSlGgVSzJoFkdAqBLpUBGQS3V9lChoBmgJaA9DCDAS2nIuReW/lIaUUpRoFUsyaBZHQKgSq53C9AZ1fZQoaAZoCWgPQwjJc30fDpLsv5SGlFKUaBVLMmgWR0CoEmqeTV2BdX2UKGgGaAloD0MIrrg4KjcR8L+UhpRSlGgVSzJoFkdAqBRDcmBvrHV9lChoBmgJaA9DCLe3W5IDduC/lIaUUpRoFUsyaBZHQKgUAx8lXzV1fZQoaAZoCWgPQwi78lmeB3fmv5SGlFKUaBVLMmgWR0CoE8Vo6CDmdX2UKGgGaAloD0MIqyAGuvaF57+UhpRSlGgVSzJoFkdAqBOEVBUrCnV9lChoBmgJaA9DCNEksaTcfem/lIaUUpRoFUsyaBZHQKgVZLQHAyp1fZQoaAZoCWgPQwgVqTC2EOTav5SGlFKUaBVLMmgWR0CoFSRqwhW6dX2UKGgGaAloD0MIpFLsaBzq1L+UhpRSlGgVSzJoFkdAqBTmskpqh3V9lChoBmgJaA9DCCY2H9eGiuG/lIaUUpRoFUsyaBZHQKgUpah6By11fZQoaAZoCWgPQwiug4O9iSHlv5SGlFKUaBVLMmgWR0CoFngLiMo+dX2UKGgGaAloD0MIBdzz/Gmj0L+UhpRSlGgVSzJoFkdAqBY3wqiGnHV9lChoBmgJaA9DCF4R/G8lu++/lIaUUpRoFUsyaBZHQKgV+h24d6t1fZQoaAZoCWgPQwhrgT0mUhrnv5SGlFKUaBVLMmgWR0CoFbkWykbhdX2UKGgGaAloD0MIZaa0/pYA6b+UhpRSlGgVSzJoFkdAqBeuLYPGyXV9lChoBmgJaA9DCFb18jtNZua/lIaUUpRoFUsyaBZHQKgXbnfVI7N1fZQoaAZoCWgPQwiTq1j8prDYv5SGlFKUaBVLMmgWR0CoFzEnb7CSdX2UKGgGaAloD0MI+rmhKTv95r+UhpRSlGgVSzJoFkdAqBbwqTbFj3V9lChoBmgJaA9DCFaZKa2/Jdi/lIaUUpRoFUsyaBZHQKgY0biIcip1fZQoaAZoCWgPQwjAP6VKlL3fv5SGlFKUaBVLMmgWR0CoGJGvOhTPdX2UKGgGaAloD0MIlE+PbRlw4L+UhpRSlGgVSzJoFkdAqBhUDW9UTHV9lChoBmgJaA9DCPsGJjeKrNi/lIaUUpRoFUsyaBZHQKgYExs2vSt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.6052704808535054, "std_reward": 0.18771557747240347, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-08T05:12:16.200140"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab797144622331a0dd83b30771ee1eccbed3154d218c8da24a82ea4d40ef20e
|
3 |
+
size 2387
|