update README
Browse files
README.md
CHANGED
@@ -4,4 +4,67 @@ base_model:
|
|
4 |
- timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k
|
5 |
pipeline_tag: image-classification
|
6 |
library_name: timm
|
7 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
- timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k
|
5 |
pipeline_tag: image-classification
|
6 |
library_name: timm
|
7 |
+
---
|
8 |
+
|
9 |
+
# PowerPoint slide classifier
|
10 |
+
|
11 |
+
This is a classifier to classify 5 types of PowerPoint slide layouts. Finetuned from `timm/swin_base_patch4_window7_224.ms_in22k_ft_in1k` and trained on 10k powerpoint slide images.
|
12 |
+
|
13 |
+
## Usage
|
14 |
+
|
15 |
+
### Install timm and dependencies
|
16 |
+
|
17 |
+
```bash
|
18 |
+
pip install timm==1.0.15 torch==2.7.0 torchvision==0.22.0
|
19 |
+
```
|
20 |
+
|
21 |
+
### Inference
|
22 |
+
|
23 |
+
Use the following code to classify images from a folder.
|
24 |
+
|
25 |
+
```python
|
26 |
+
import os
|
27 |
+
import timm
|
28 |
+
import torch
|
29 |
+
from PIL import Image
|
30 |
+
from torchvision import transforms
|
31 |
+
|
32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
+
image_folder = 'path_to_images'
|
34 |
+
|
35 |
+
transform = transforms.Compose([
|
36 |
+
transforms.Resize((224, 224)),
|
37 |
+
transforms.ToTensor(),
|
38 |
+
transforms.Normalize(
|
39 |
+
mean=[0.485, 0.456, 0.406],
|
40 |
+
std=[0.229, 0.224, 0.225]
|
41 |
+
)
|
42 |
+
])
|
43 |
+
|
44 |
+
model = timm.create_model('swin_base_patch4_window7_224', pretrained=False, num_classes=5)
|
45 |
+
model.load_state_dict(torch.load('pytorch_model.bin'))
|
46 |
+
model.to(device)
|
47 |
+
model.eval()
|
48 |
+
|
49 |
+
image_files = [f for f in os.listdir(image_folder) if f.lower().endswith('.png')]
|
50 |
+
|
51 |
+
idx_to_class = {
|
52 |
+
0: 'content',
|
53 |
+
1: 'end',
|
54 |
+
2: 'start',
|
55 |
+
3: 'subt',
|
56 |
+
4: 'subtl'
|
57 |
+
}
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
for image_name in image_files:
|
61 |
+
image_path = os.path.join(image_folder, image_name)
|
62 |
+
image = Image.open(image_path).convert('RGB')
|
63 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
64 |
+
|
65 |
+
output = model(input_tensor)
|
66 |
+
predicted_class = torch.argmax(output, dim=1).item()
|
67 |
+
predicted_label = idx_to_class[predicted_class]
|
68 |
+
|
69 |
+
print(f"{image_name} --> {predicted_label}")
|
70 |
+
```
|