--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_fold3 results: [] --- # mdeberta-domain_fold3 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3664 - Accuracy: 0.8552 - Precision: 0.8062 - Recall: 0.8272 - F1: 0.8121 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0354 | 1.0 | 19 | 0.8810 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.838 | 2.0 | 38 | 0.6894 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.6843 | 3.0 | 57 | 0.5961 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.6099 | 4.0 | 76 | 0.5219 | 0.8483 | 0.8754 | 0.7547 | 0.7395 | | 0.4717 | 5.0 | 95 | 0.4116 | 0.8621 | 0.8261 | 0.8158 | 0.8065 | | 0.3463 | 6.0 | 114 | 0.3584 | 0.8828 | 0.8581 | 0.8351 | 0.8331 | | 0.2913 | 7.0 | 133 | 0.3705 | 0.8690 | 0.8493 | 0.8045 | 0.7994 | | 0.264 | 8.0 | 152 | 0.3705 | 0.8621 | 0.8154 | 0.8234 | 0.8113 | | 0.2494 | 9.0 | 171 | 0.3455 | 0.8690 | 0.8273 | 0.8426 | 0.8311 | | 0.1923 | 10.0 | 190 | 0.3664 | 0.8552 | 0.8062 | 0.8272 | 0.8121 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1