--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wav2vec2-classifier results: [] --- # wav2vec2-classifier This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.4346 - Accuracy: 0.0121 - Precision: 0.0001 - Recall: 0.0121 - F1: 0.0003 - Binary: 0.1515 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 0.08 | 50 | 4.4494 | 0.0146 | 0.0002 | 0.0146 | 0.0004 | 0.1633 | | No log | 0.16 | 100 | 4.4464 | 0.0097 | 0.0001 | 0.0097 | 0.0002 | 0.1112 | | No log | 0.24 | 150 | 4.4330 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1498 | | No log | 0.31 | 200 | 4.4432 | 0.0097 | 0.0001 | 0.0097 | 0.0002 | 0.1112 | | No log | 0.39 | 250 | 4.4338 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | | No log | 0.47 | 300 | 4.4480 | 0.0194 | 0.0004 | 0.0194 | 0.0007 | 0.1549 | | No log | 0.55 | 350 | 4.4439 | 0.0146 | 0.0002 | 0.0146 | 0.0004 | 0.1430 | | No log | 0.63 | 400 | 4.4467 | 0.0146 | 0.0002 | 0.0146 | 0.0004 | 0.1172 | | No log | 0.71 | 450 | 4.4418 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | | No log | 0.78 | 500 | 4.4394 | 0.0194 | 0.0004 | 0.0194 | 0.0007 | 0.1549 | | No log | 0.86 | 550 | 4.4450 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1498 | | No log | 0.94 | 600 | 4.4342 | 0.0049 | 0.0000 | 0.0049 | 0.0000 | 0.1532 | | 4.4341 | 1.02 | 650 | 4.4374 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1061 | | 4.4341 | 1.1 | 700 | 4.4479 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | | 4.4341 | 1.18 | 750 | 4.4399 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | | 4.4341 | 1.25 | 800 | 4.4421 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | | 4.4341 | 1.33 | 850 | 4.4346 | 0.0121 | 0.0001 | 0.0121 | 0.0003 | 0.1515 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1