--- license: apache-2.0 base_model: asapp/sew-d-tiny-100k-ft-ls100h tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sewd-classifier-aug-large results: [] --- # sewd-classifier-aug-large This model is a fine-tuned version of [asapp/sew-d-tiny-100k-ft-ls100h](https://huggingface.co/asapp/sew-d-tiny-100k-ft-ls100h) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2094 - Accuracy: 0.1712 - Precision: 0.0867 - Recall: 0.1712 - F1: 0.0887 - Binary: 0.4166 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Binary | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | No log | 0.1 | 50 | 4.4166 | 0.0108 | 0.0010 | 0.0108 | 0.0013 | 0.1291 | | No log | 0.2 | 100 | 4.3510 | 0.0135 | 0.0069 | 0.0135 | 0.0026 | 0.1367 | | No log | 0.29 | 150 | 4.2531 | 0.0323 | 0.0016 | 0.0323 | 0.0030 | 0.2372 | | No log | 0.39 | 200 | 4.1748 | 0.0350 | 0.0022 | 0.0350 | 0.0039 | 0.2779 | | No log | 0.49 | 250 | 4.0970 | 0.0431 | 0.0076 | 0.0431 | 0.0094 | 0.2969 | | No log | 0.59 | 300 | 4.0268 | 0.0499 | 0.0179 | 0.0499 | 0.0116 | 0.3198 | | No log | 0.69 | 350 | 3.9648 | 0.0472 | 0.0029 | 0.0472 | 0.0054 | 0.3175 | | No log | 0.78 | 400 | 3.8977 | 0.0553 | 0.0279 | 0.0553 | 0.0164 | 0.3283 | | No log | 0.88 | 450 | 3.8290 | 0.0768 | 0.0239 | 0.0768 | 0.0230 | 0.3437 | | No log | 0.98 | 500 | 3.7650 | 0.0701 | 0.0313 | 0.0701 | 0.0252 | 0.3418 | | 4.166 | 1.08 | 550 | 3.7060 | 0.0997 | 0.0444 | 0.0997 | 0.0418 | 0.3625 | | 4.166 | 1.18 | 600 | 3.6526 | 0.1132 | 0.0497 | 0.1132 | 0.0501 | 0.3733 | | 4.166 | 1.27 | 650 | 3.5931 | 0.1132 | 0.0433 | 0.1132 | 0.0509 | 0.3732 | | 4.166 | 1.37 | 700 | 3.5467 | 0.1240 | 0.0664 | 0.1240 | 0.0558 | 0.3805 | | 4.166 | 1.47 | 750 | 3.4981 | 0.1213 | 0.0589 | 0.1213 | 0.0553 | 0.3792 | | 4.166 | 1.57 | 800 | 3.4544 | 0.1361 | 0.0606 | 0.1361 | 0.0641 | 0.3904 | | 4.166 | 1.67 | 850 | 3.4081 | 0.1456 | 0.0557 | 0.1456 | 0.0655 | 0.3980 | | 4.166 | 1.76 | 900 | 3.3696 | 0.1536 | 0.0812 | 0.1536 | 0.0786 | 0.4040 | | 4.166 | 1.86 | 950 | 3.3213 | 0.1523 | 0.0609 | 0.1523 | 0.0745 | 0.4038 | | 4.166 | 1.96 | 1000 | 3.2814 | 0.1779 | 0.0991 | 0.1779 | 0.0922 | 0.4217 | | 3.6654 | 2.06 | 1050 | 3.2435 | 0.1550 | 0.0883 | 0.1550 | 0.0737 | 0.4061 | | 3.6654 | 2.16 | 1100 | 3.2094 | 0.1712 | 0.0867 | 0.1712 | 0.0887 | 0.4166 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1