fwzmyd commited on
Commit
a3319b1
·
1 Parent(s): 15ae220

First time use of Gym and Stable baseline

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.05 +/- 37.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3c3c87ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3c3c87d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3c3c87dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3c3c87e50>", "_build": "<function ActorCriticPolicy._build at 0x7fe3c3c87ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3c3c87f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe3c3c8b040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3c3c8b0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3c3c8b160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3c3c8b1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3c3c8b280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3c3c8b310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3c3c85600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 917504, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677384508130593545, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sUrslcLM/9remvvwqzr7zj3Q7kg6XPQAAAAAAAAAAGtGcPV/6MT5EucK8+8FpvmqVGD2WGjS9AAAAAAAAAAAAGAM961CJPY5iC75Jmna+M659vRquzT0AAAAAAAAAAKby073VD6E+qbgUPhC8h74a16Y8eM59PAAAAAAAAAAAZl7wPat6dD9ulyY+S74Rv2qHDj5Alno9AAAAAAAAAAD973G+laMnPmhDHz6eIIW+WxpWu+KeqLwAAAAAAAAAACapNj7OooS8ltLFPVbdLbzs2+69c3ILvQAAgD8AAIA/APAPvtisij3fA4g9KbjXvRG1Br0qNri8AAAAAAAAAABNAgW9x/eDPwpdwr2zUB2/pqc4vHKgeLwAAAAAAAAAAJr6P77BwpO83EIqu254c7nBLwA+SG1bOgAAgD8AAIA/892svdfpIrun+A8+IeIJvmokZbw9m/K+AACAPwAAgD9m/0c9Lv3oO/wOgL4SuMW+3tYKvlcpCj8AAIA/AAAAAGaGOToLHJo/ycA4vBxwEb81/488BzMDPQAAAAAAAAAA+pg5vq+8ST/EbDq+UPDxvha0Kb415BI9AAAAAAAAAABN9MQ9UrTau9B1OL36DCY9hU4mPaJ8CL4AAIA/AACAPw0GvT17wpi6RgHYOq0lzTWOdha6o435uQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01944888888888885, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI8YccECUhpRSlIwBbJRL1owBdJRHQJTI0uXeFcp1fZQoaAZoCWgPQwjfxftxO0RwQJSGlFKUaBVNIAFoFkdAlMlpOzposnV9lChoBmgJaA9DCEUtza0QTEpAlIaUUpRoFUutaBZHQJTJ6PHT7VJ1fZQoaAZoCWgPQwicbtkhvvVxQJSGlFKUaBVLz2gWR0CUyuFvhqCZdX2UKGgGaAloD0MIL90kBoGfc0CUhpRSlGgVS89oFkdAlMs7Gecx03V9lChoBmgJaA9DCAdcV8xIpnFAlIaUUpRoFU0fAWgWR0CUzyaJQ+EAdX2UKGgGaAloD0MIvR5Mio9hcECUhpRSlGgVTTABaBZHQJTPwFGG21F1fZQoaAZoCWgPQwjFxryOON5yQJSGlFKUaBVL42gWR0CU0Bu7HyVfdX2UKGgGaAloD0MI3e16aUo0cUCUhpRSlGgVS+5oFkdAlNGis8xKx3V9lChoBmgJaA9DCHhF8L8VCnBAlIaUUpRoFU0FAWgWR0CU0e0vXbuddX2UKGgGaAloD0MIoUliSTnGb0CUhpRSlGgVS9JoFkdAlNHuXVsk6nV9lChoBmgJaA9DCN3sD5TbW2BAlIaUUpRoFU3oA2gWR0CU0hP/aQFLdX2UKGgGaAloD0MImIbhI+KFYECUhpRSlGgVTegDaBZHQJTSRlGwzLx1fZQoaAZoCWgPQwiLwcO0b9hwQJSGlFKUaBVLzGgWR0CU0nckt29tdX2UKGgGaAloD0MIp86j4j/pcUCUhpRSlGgVS/toFkdAlNMRY/3WWnV9lChoBmgJaA9DCFw8vOcAk3FAlIaUUpRoFUvtaBZHQJTUIPOIInl1fZQoaAZoCWgPQwifIoeIm1hiQJSGlFKUaBVN6ANoFkdAlNRRKxs2vXV9lChoBmgJaA9DCAUzpmDNynJAlIaUUpRoFUvcaBZHQJTUfZ13dKx1fZQoaAZoCWgPQwhQwkzb/0pxQJSGlFKUaBVL8GgWR0CU1W1vl2eQdX2UKGgGaAloD0MI4ezWMtnKcUCUhpRSlGgVTW8BaBZHQJTVnLidat91fZQoaAZoCWgPQwj92CQ/Ir1yQJSGlFKUaBVLwWgWR0CU13DBdld1dX2UKGgGaAloD0MIkfEolXB/bUCUhpRSlGgVS8xoFkdAlNeUeZG8VnV9lChoBmgJaA9DCOW0p+TcPnBAlIaUUpRoFUu3aBZHQJTYeizsyBV1fZQoaAZoCWgPQwhMw/AR8dJyQJSGlFKUaBVNHAFoFkdAlNpg3HaN/HV9lChoBmgJaA9DCHRiD+1jkHBAlIaUUpRoFUvfaBZHQJTbc4ffXPJ1fZQoaAZoCWgPQwjmeXB31mhwQJSGlFKUaBVNAQFoFkdAlNwhsEaESXV9lChoBmgJaA9DCH8uGjKeqW5AlIaUUpRoFU0UAWgWR0CU3IOWSlnAdX2UKGgGaAloD0MICwith+9icECUhpRSlGgVS+BoFkdAlNzAP/aQFXV9lChoBmgJaA9DCPg3aK++v29AlIaUUpRoFUvgaBZHQJTdIM8YAKh1fZQoaAZoCWgPQwjo3sMlR1RtQJSGlFKUaBVLwGgWR0CU3S2QXAM2dX2UKGgGaAloD0MIGlOwxpk+cECUhpRSlGgVS/JoFkdAlN2aVD8cdnV9lChoBmgJaA9DCM3lBkMd9XBAlIaUUpRoFU1UAWgWR0CU3sUCaJAMdX2UKGgGaAloD0MIa54j8t2dckCUhpRSlGgVS9NoFkdAlN9F9fCyhXV9lChoBmgJaA9DCBrCMcueLXNAlIaUUpRoFUvBaBZHQJTffRc/t6Z1fZQoaAZoCWgPQwjrOH6otE5wQJSGlFKUaBVL3GgWR0CU35KzAvcrdX2UKGgGaAloD0MIycwFLk/HckCUhpRSlGgVS8hoFkdAlOGVanrIHXV9lChoBmgJaA9DCJqw/WQM3nBAlIaUUpRoFUvcaBZHQJTiqJZW7vp1fZQoaAZoCWgPQwg9tfrqaolyQJSGlFKUaBVL1WgWR0CU4rmuTzNEdX2UKGgGaAloD0MIQUrs2l7ackCUhpRSlGgVS9loFkdAlOMBfjS5RXV9lChoBmgJaA9DCDwW26TiUXBAlIaUUpRoFUvRaBZHQJTjGCBf8dh1fZQoaAZoCWgPQwhkXHFxFKJyQJSGlFKUaBVLxWgWR0CU4xVmSQo1dX2UKGgGaAloD0MIdXKG4o4lcECUhpRSlGgVS/NoFkdAlOPwEU0vXnV9lChoBmgJaA9DCHoaMEh6xW1AlIaUUpRoFUvKaBZHQJTkQr5IpYt1fZQoaAZoCWgPQwizs+idiodwQJSGlFKUaBVLymgWR0CU5McfvF3qdX2UKGgGaAloD0MIkIR9O8lqcUCUhpRSlGgVTXMBaBZHQJTljeHi3od1fZQoaAZoCWgPQwh8DFac6p1kQJSGlFKUaBVN6ANoFkdAlOXV3Y+SsHV9lChoBmgJaA9DCNiBc0aUDG5AlIaUUpRoFU0lAmgWR0CU5usHjZL7dX2UKGgGaAloD0MIfv0QG+xicECUhpRSlGgVTR8BaBZHQJTnVoEjgQ91fZQoaAZoCWgPQwjPoKF/gt9uQJSGlFKUaBVL82gWR0CU6EIj4YaYdX2UKGgGaAloD0MIKNNocnGBcUCUhpRSlGgVS8xoFkdAlOiWvnr6cnV9lChoBmgJaA9DCJMa2gDsQXBAlIaUUpRoFUvcaBZHQJTonDsMRYl1fZQoaAZoCWgPQwjfbd44KWBvQJSGlFKUaBVL1mgWR0CU6MStvGZNdX2UKGgGaAloD0MIo61KInt4b0CUhpRSlGgVS+FoFkdAlOjL3sXzlXV9lChoBmgJaA9DCJJbk25Lv25AlIaUUpRoFUvgaBZHQJTpD9AHE/B1fZQoaAZoCWgPQwguVP61fHVxQJSGlFKUaBVL62gWR0CU6oBAv+OwdX2UKGgGaAloD0MIQ+T09fzXb0CUhpRSlGgVS+RoFkdAlOrXEyckMXV9lChoBmgJaA9DCMU4fxOK9G5AlIaUUpRoFU0nAWgWR0CU68kt29tedX2UKGgGaAloD0MIWTUIcztBcUCUhpRSlGgVTRUBaBZHQJTtZjEvTPV1fZQoaAZoCWgPQwhhcM0dffZwQJSGlFKUaBVNIAFoFkdAlO1upwS8J3V9lChoBmgJaA9DCHwKgPEMDnJAlIaUUpRoFUv3aBZHQJTuJabF0gd1fZQoaAZoCWgPQwiXqN4aWHRwQJSGlFKUaBVNHwFoFkdAlO72lZX+2nV9lChoBmgJaA9DCGGnWDUIl29AlIaUUpRoFUv5aBZHQJTvTr2QGOd1fZQoaAZoCWgPQwhrYKsECztxQJSGlFKUaBVL7WgWR0CU71TVUdaMdX2UKGgGaAloD0MIi3H+JtQqc0CUhpRSlGgVS+9oFkdAlO+PdRBNVXV9lChoBmgJaA9DCMBatWvCo3BAlIaUUpRoFUvxaBZHQJTv+IuXeFd1fZQoaAZoCWgPQwhLrIxGvvBwQJSGlFKUaBVNBQFoFkdAlPAyzTnaFnV9lChoBmgJaA9DCCqr6XqiF2FAlIaUUpRoFU3oA2gWR0CU8KjkMkQgdX2UKGgGaAloD0MIuXL2zugxY0CUhpRSlGgVTegDaBZHQJTw0TSLIgh1fZQoaAZoCWgPQwjmQA+17TFyQJSGlFKUaBVL4GgWR0CU8QPwNLDidX2UKGgGaAloD0MI/+vctBnmcECUhpRSlGgVTTABaBZHQJTxHeKsMiN1fZQoaAZoCWgPQwjicyfY/1RuQJSGlFKUaBVL3GgWR0CU8gn7pFCtdX2UKGgGaAloD0MIBMsRMlDGcUCUhpRSlGgVS7hoFkdAlPNc2aUiZHV9lChoBmgJaA9DCJ1Jm6q7Z3NAlIaUUpRoFUvVaBZHQJT2MQmNR3x1fZQoaAZoCWgPQwjECOHRxnRvQJSGlFKUaBVNFAFoFkdAlPZfoaDPGHV9lChoBmgJaA9DCPNWXYcqFHBAlIaUUpRoFU0YAWgWR0CU9oRhc7hfdX2UKGgGaAloD0MIXJAty1e1b0CUhpRSlGgVS8loFkdAlPgEal1r7HV9lChoBmgJaA9DCA/UKY/uDXFAlIaUUpRoFU0CAWgWR0CU+DGLDQ7cdX2UKGgGaAloD0MIJCU9DO3dcUCUhpRSlGgVS/VoFkdAlPigtJ4B3nV9lChoBmgJaA9DCHXIzXADgW9AlIaUUpRoFUv9aBZHQJT5SaJAMUh1fZQoaAZoCWgPQwhhjEgUWiZ0QJSGlFKUaBVL7mgWR0CU+iCWeHzpdX2UKGgGaAloD0MIks8rnrrfckCUhpRSlGgVTQcBaBZHQJT6Z1EE1VJ1fZQoaAZoCWgPQwjytWeWxGFyQJSGlFKUaBVNCQFoFkdAlPsVtoBaLXV9lChoBmgJaA9DCG4Xmuu0eG9AlIaUUpRoFUvgaBZHQJT7NhAnlXB1fZQoaAZoCWgPQwjwoxr2+4lwQJSGlFKUaBVLzmgWR0CU/CJ3xFy8dX2UKGgGaAloD0MIpU3VPTJQcECUhpRSlGgVTfkBaBZHQJT8OcMEzO51fZQoaAZoCWgPQwi/RSdLraVsQJSGlFKUaBVNbAFoFkdAlPzi88La3HV9lChoBmgJaA9DCIwQHm2cqXBAlIaUUpRoFUvFaBZHQJT+lyPuG9J1fZQoaAZoCWgPQwgIlE25QgpwQJSGlFKUaBVLyWgWR0CU/qO6unuRdX2UKGgGaAloD0MIL00R4PSNX0CUhpRSlGgVTegDaBZHQJT/Snfl6qt1fZQoaAZoCWgPQwj4G+24oSlwQJSGlFKUaBVLzWgWR0CVAGh5Pdl/dX2UKGgGaAloD0MIWvJ4Wn5kcUCUhpRSlGgVTQEBaBZHQJUApywOe8R1fZQoaAZoCWgPQwh/NJwy9wNzQJSGlFKUaBVLvmgWR0CVANaESM99dX2UKGgGaAloD0MIPEolPKFZbkCUhpRSlGgVS85oFkdAlQDWAbyYonV9lChoBmgJaA9DCCqnPSWnX3FAlIaUUpRoFUvjaBZHQJUBFdKNAC51fZQoaAZoCWgPQwiVm6ilOT1wQJSGlFKUaBVLvGgWR0CVAXJTER8MdX2UKGgGaAloD0MIQDIdOv0WcECUhpRSlGgVS9VoFkdAlQNL9/BnBnV9lChoBmgJaA9DCLJnz2WqYnFAlIaUUpRoFUvJaBZHQJUDusbNr0t1fZQoaAZoCWgPQwhzLVqA9t1xQJSGlFKUaBVL9mgWR0CVBHpiZv1ldX2UKGgGaAloD0MIdvnWh3WHcUCUhpRSlGgVTQYBaBZHQJUEe72+PBB1fZQoaAZoCWgPQwhj0t9LIU9wQJSGlFKUaBVL9WgWR0CVBUfNiYsvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2af99dd1e07b6cfa1727aae8b258ae035165a8eb8d58ddfd9be8cd747934ecf5
3
+ size 147324
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3c3c87ca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3c3c87d30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3c3c87dc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3c3c87e50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe3c3c87ee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe3c3c87f70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe3c3c8b040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3c3c8b0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe3c3c8b160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3c3c8b1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3c3c8b280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3c3c8b310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe3c3c85600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 917504,
47
+ "_total_timesteps": 900000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677384508130593545,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sUrslcLM/9remvvwqzr7zj3Q7kg6XPQAAAAAAAAAAGtGcPV/6MT5EucK8+8FpvmqVGD2WGjS9AAAAAAAAAAAAGAM961CJPY5iC75Jmna+M659vRquzT0AAAAAAAAAAKby073VD6E+qbgUPhC8h74a16Y8eM59PAAAAAAAAAAAZl7wPat6dD9ulyY+S74Rv2qHDj5Alno9AAAAAAAAAAD973G+laMnPmhDHz6eIIW+WxpWu+KeqLwAAAAAAAAAACapNj7OooS8ltLFPVbdLbzs2+69c3ILvQAAgD8AAIA/APAPvtisij3fA4g9KbjXvRG1Br0qNri8AAAAAAAAAABNAgW9x/eDPwpdwr2zUB2/pqc4vHKgeLwAAAAAAAAAAJr6P77BwpO83EIqu254c7nBLwA+SG1bOgAAgD8AAIA/892svdfpIrun+A8+IeIJvmokZbw9m/K+AACAPwAAgD9m/0c9Lv3oO/wOgL4SuMW+3tYKvlcpCj8AAIA/AAAAAGaGOToLHJo/ycA4vBxwEb81/488BzMDPQAAAAAAAAAA+pg5vq+8ST/EbDq+UPDxvha0Kb415BI9AAAAAAAAAABN9MQ9UrTau9B1OL36DCY9hU4mPaJ8CL4AAIA/AACAPw0GvT17wpi6RgHYOq0lzTWOdha6o435uQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.01944888888888885,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI8YccECUhpRSlIwBbJRL1owBdJRHQJTI0uXeFcp1fZQoaAZoCWgPQwjfxftxO0RwQJSGlFKUaBVNIAFoFkdAlMlpOzposnV9lChoBmgJaA9DCEUtza0QTEpAlIaUUpRoFUutaBZHQJTJ6PHT7VJ1fZQoaAZoCWgPQwicbtkhvvVxQJSGlFKUaBVLz2gWR0CUyuFvhqCZdX2UKGgGaAloD0MIL90kBoGfc0CUhpRSlGgVS89oFkdAlMs7Gecx03V9lChoBmgJaA9DCAdcV8xIpnFAlIaUUpRoFU0fAWgWR0CUzyaJQ+EAdX2UKGgGaAloD0MIvR5Mio9hcECUhpRSlGgVTTABaBZHQJTPwFGG21F1fZQoaAZoCWgPQwjFxryOON5yQJSGlFKUaBVL42gWR0CU0Bu7HyVfdX2UKGgGaAloD0MI3e16aUo0cUCUhpRSlGgVS+5oFkdAlNGis8xKx3V9lChoBmgJaA9DCHhF8L8VCnBAlIaUUpRoFU0FAWgWR0CU0e0vXbuddX2UKGgGaAloD0MIoUliSTnGb0CUhpRSlGgVS9JoFkdAlNHuXVsk6nV9lChoBmgJaA9DCN3sD5TbW2BAlIaUUpRoFU3oA2gWR0CU0hP/aQFLdX2UKGgGaAloD0MImIbhI+KFYECUhpRSlGgVTegDaBZHQJTSRlGwzLx1fZQoaAZoCWgPQwiLwcO0b9hwQJSGlFKUaBVLzGgWR0CU0nckt29tdX2UKGgGaAloD0MIp86j4j/pcUCUhpRSlGgVS/toFkdAlNMRY/3WWnV9lChoBmgJaA9DCFw8vOcAk3FAlIaUUpRoFUvtaBZHQJTUIPOIInl1fZQoaAZoCWgPQwifIoeIm1hiQJSGlFKUaBVN6ANoFkdAlNRRKxs2vXV9lChoBmgJaA9DCAUzpmDNynJAlIaUUpRoFUvcaBZHQJTUfZ13dKx1fZQoaAZoCWgPQwhQwkzb/0pxQJSGlFKUaBVL8GgWR0CU1W1vl2eQdX2UKGgGaAloD0MI4ezWMtnKcUCUhpRSlGgVTW8BaBZHQJTVnLidat91fZQoaAZoCWgPQwj92CQ/Ir1yQJSGlFKUaBVLwWgWR0CU13DBdld1dX2UKGgGaAloD0MIkfEolXB/bUCUhpRSlGgVS8xoFkdAlNeUeZG8VnV9lChoBmgJaA9DCOW0p+TcPnBAlIaUUpRoFUu3aBZHQJTYeizsyBV1fZQoaAZoCWgPQwhMw/AR8dJyQJSGlFKUaBVNHAFoFkdAlNpg3HaN/HV9lChoBmgJaA9DCHRiD+1jkHBAlIaUUpRoFUvfaBZHQJTbc4ffXPJ1fZQoaAZoCWgPQwjmeXB31mhwQJSGlFKUaBVNAQFoFkdAlNwhsEaESXV9lChoBmgJaA9DCH8uGjKeqW5AlIaUUpRoFU0UAWgWR0CU3IOWSlnAdX2UKGgGaAloD0MICwith+9icECUhpRSlGgVS+BoFkdAlNzAP/aQFXV9lChoBmgJaA9DCPg3aK++v29AlIaUUpRoFUvgaBZHQJTdIM8YAKh1fZQoaAZoCWgPQwjo3sMlR1RtQJSGlFKUaBVLwGgWR0CU3S2QXAM2dX2UKGgGaAloD0MIGlOwxpk+cECUhpRSlGgVS/JoFkdAlN2aVD8cdnV9lChoBmgJaA9DCM3lBkMd9XBAlIaUUpRoFU1UAWgWR0CU3sUCaJAMdX2UKGgGaAloD0MIa54j8t2dckCUhpRSlGgVS9NoFkdAlN9F9fCyhXV9lChoBmgJaA9DCBrCMcueLXNAlIaUUpRoFUvBaBZHQJTffRc/t6Z1fZQoaAZoCWgPQwjrOH6otE5wQJSGlFKUaBVL3GgWR0CU35KzAvcrdX2UKGgGaAloD0MIycwFLk/HckCUhpRSlGgVS8hoFkdAlOGVanrIHXV9lChoBmgJaA9DCJqw/WQM3nBAlIaUUpRoFUvcaBZHQJTiqJZW7vp1fZQoaAZoCWgPQwg9tfrqaolyQJSGlFKUaBVL1WgWR0CU4rmuTzNEdX2UKGgGaAloD0MIQUrs2l7ackCUhpRSlGgVS9loFkdAlOMBfjS5RXV9lChoBmgJaA9DCDwW26TiUXBAlIaUUpRoFUvRaBZHQJTjGCBf8dh1fZQoaAZoCWgPQwhkXHFxFKJyQJSGlFKUaBVLxWgWR0CU4xVmSQo1dX2UKGgGaAloD0MIdXKG4o4lcECUhpRSlGgVS/NoFkdAlOPwEU0vXnV9lChoBmgJaA9DCHoaMEh6xW1AlIaUUpRoFUvKaBZHQJTkQr5IpYt1fZQoaAZoCWgPQwizs+idiodwQJSGlFKUaBVLymgWR0CU5McfvF3qdX2UKGgGaAloD0MIkIR9O8lqcUCUhpRSlGgVTXMBaBZHQJTljeHi3od1fZQoaAZoCWgPQwh8DFac6p1kQJSGlFKUaBVN6ANoFkdAlOXV3Y+SsHV9lChoBmgJaA9DCNiBc0aUDG5AlIaUUpRoFU0lAmgWR0CU5usHjZL7dX2UKGgGaAloD0MIfv0QG+xicECUhpRSlGgVTR8BaBZHQJTnVoEjgQ91fZQoaAZoCWgPQwjPoKF/gt9uQJSGlFKUaBVL82gWR0CU6EIj4YaYdX2UKGgGaAloD0MIKNNocnGBcUCUhpRSlGgVS8xoFkdAlOiWvnr6cnV9lChoBmgJaA9DCJMa2gDsQXBAlIaUUpRoFUvcaBZHQJTonDsMRYl1fZQoaAZoCWgPQwjfbd44KWBvQJSGlFKUaBVL1mgWR0CU6MStvGZNdX2UKGgGaAloD0MIo61KInt4b0CUhpRSlGgVS+FoFkdAlOjL3sXzlXV9lChoBmgJaA9DCJJbk25Lv25AlIaUUpRoFUvgaBZHQJTpD9AHE/B1fZQoaAZoCWgPQwguVP61fHVxQJSGlFKUaBVL62gWR0CU6oBAv+OwdX2UKGgGaAloD0MIQ+T09fzXb0CUhpRSlGgVS+RoFkdAlOrXEyckMXV9lChoBmgJaA9DCMU4fxOK9G5AlIaUUpRoFU0nAWgWR0CU68kt29tedX2UKGgGaAloD0MIWTUIcztBcUCUhpRSlGgVTRUBaBZHQJTtZjEvTPV1fZQoaAZoCWgPQwhhcM0dffZwQJSGlFKUaBVNIAFoFkdAlO1upwS8J3V9lChoBmgJaA9DCHwKgPEMDnJAlIaUUpRoFUv3aBZHQJTuJabF0gd1fZQoaAZoCWgPQwiXqN4aWHRwQJSGlFKUaBVNHwFoFkdAlO72lZX+2nV9lChoBmgJaA9DCGGnWDUIl29AlIaUUpRoFUv5aBZHQJTvTr2QGOd1fZQoaAZoCWgPQwhrYKsECztxQJSGlFKUaBVL7WgWR0CU71TVUdaMdX2UKGgGaAloD0MIi3H+JtQqc0CUhpRSlGgVS+9oFkdAlO+PdRBNVXV9lChoBmgJaA9DCMBatWvCo3BAlIaUUpRoFUvxaBZHQJTv+IuXeFd1fZQoaAZoCWgPQwhLrIxGvvBwQJSGlFKUaBVNBQFoFkdAlPAyzTnaFnV9lChoBmgJaA9DCCqr6XqiF2FAlIaUUpRoFU3oA2gWR0CU8KjkMkQgdX2UKGgGaAloD0MIuXL2zugxY0CUhpRSlGgVTegDaBZHQJTw0TSLIgh1fZQoaAZoCWgPQwjmQA+17TFyQJSGlFKUaBVL4GgWR0CU8QPwNLDidX2UKGgGaAloD0MI/+vctBnmcECUhpRSlGgVTTABaBZHQJTxHeKsMiN1fZQoaAZoCWgPQwjicyfY/1RuQJSGlFKUaBVL3GgWR0CU8gn7pFCtdX2UKGgGaAloD0MIBMsRMlDGcUCUhpRSlGgVS7hoFkdAlPNc2aUiZHV9lChoBmgJaA9DCJ1Jm6q7Z3NAlIaUUpRoFUvVaBZHQJT2MQmNR3x1fZQoaAZoCWgPQwjECOHRxnRvQJSGlFKUaBVNFAFoFkdAlPZfoaDPGHV9lChoBmgJaA9DCPNWXYcqFHBAlIaUUpRoFU0YAWgWR0CU9oRhc7hfdX2UKGgGaAloD0MIXJAty1e1b0CUhpRSlGgVS8loFkdAlPgEal1r7HV9lChoBmgJaA9DCA/UKY/uDXFAlIaUUpRoFU0CAWgWR0CU+DGLDQ7cdX2UKGgGaAloD0MIJCU9DO3dcUCUhpRSlGgVS/VoFkdAlPigtJ4B3nV9lChoBmgJaA9DCHXIzXADgW9AlIaUUpRoFUv9aBZHQJT5SaJAMUh1fZQoaAZoCWgPQwhhjEgUWiZ0QJSGlFKUaBVL7mgWR0CU+iCWeHzpdX2UKGgGaAloD0MIks8rnrrfckCUhpRSlGgVTQcBaBZHQJT6Z1EE1VJ1fZQoaAZoCWgPQwjytWeWxGFyQJSGlFKUaBVNCQFoFkdAlPsVtoBaLXV9lChoBmgJaA9DCG4Xmuu0eG9AlIaUUpRoFUvgaBZHQJT7NhAnlXB1fZQoaAZoCWgPQwjwoxr2+4lwQJSGlFKUaBVLzmgWR0CU/CJ3xFy8dX2UKGgGaAloD0MIpU3VPTJQcECUhpRSlGgVTfkBaBZHQJT8OcMEzO51fZQoaAZoCWgPQwi/RSdLraVsQJSGlFKUaBVNbAFoFkdAlPzi88La3HV9lChoBmgJaA9DCIwQHm2cqXBAlIaUUpRoFUvFaBZHQJT+lyPuG9J1fZQoaAZoCWgPQwgIlE25QgpwQJSGlFKUaBVLyWgWR0CU/qO6unuRdX2UKGgGaAloD0MIL00R4PSNX0CUhpRSlGgVTegDaBZHQJT/Snfl6qt1fZQoaAZoCWgPQwj4G+24oSlwQJSGlFKUaBVLzWgWR0CVAGh5Pdl/dX2UKGgGaAloD0MIWvJ4Wn5kcUCUhpRSlGgVTQEBaBZHQJUApywOe8R1fZQoaAZoCWgPQwh/NJwy9wNzQJSGlFKUaBVLvmgWR0CVANaESM99dX2UKGgGaAloD0MIPEolPKFZbkCUhpRSlGgVS85oFkdAlQDWAbyYonV9lChoBmgJaA9DCCqnPSWnX3FAlIaUUpRoFUvjaBZHQJUBFdKNAC51fZQoaAZoCWgPQwiVm6ilOT1wQJSGlFKUaBVLvGgWR0CVAXJTER8MdX2UKGgGaAloD0MIQDIdOv0WcECUhpRSlGgVS9VoFkdAlQNL9/BnBnV9lChoBmgJaA9DCLJnz2WqYnFAlIaUUpRoFUvJaBZHQJUDusbNr0t1fZQoaAZoCWgPQwhzLVqA9t1xQJSGlFKUaBVL9mgWR0CVBHpiZv1ldX2UKGgGaAloD0MIdvnWh3WHcUCUhpRSlGgVTQYBaBZHQJUEe72+PBB1fZQoaAZoCWgPQwhj0t9LIU9wQJSGlFKUaBVL9WgWR0CVBUfNiYsvdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 280,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e72e6d5f4ef7e68e1c590b50e0dce7ebf7a8bf23ae7381b69d092ec2497181
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a332f5ac1d2bd69352cee7e60f79573cb478579fa471831629b6acb46e8ff70d
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (244 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.0542025554531, "std_reward": 37.5647224319755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T04:33:29.106040"}