First time use of Gym and Stable baseline
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.05 +/- 37.56
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3c3c87ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3c3c87d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3c3c87dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3c3c87e50>", "_build": "<function ActorCriticPolicy._build at 0x7fe3c3c87ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3c3c87f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe3c3c8b040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3c3c8b0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3c3c8b160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3c3c8b1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3c3c8b280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3c3c8b310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3c3c85600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 917504, "_total_timesteps": 900000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677384508130593545, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sUrslcLM/9remvvwqzr7zj3Q7kg6XPQAAAAAAAAAAGtGcPV/6MT5EucK8+8FpvmqVGD2WGjS9AAAAAAAAAAAAGAM961CJPY5iC75Jmna+M659vRquzT0AAAAAAAAAAKby073VD6E+qbgUPhC8h74a16Y8eM59PAAAAAAAAAAAZl7wPat6dD9ulyY+S74Rv2qHDj5Alno9AAAAAAAAAAD973G+laMnPmhDHz6eIIW+WxpWu+KeqLwAAAAAAAAAACapNj7OooS8ltLFPVbdLbzs2+69c3ILvQAAgD8AAIA/APAPvtisij3fA4g9KbjXvRG1Br0qNri8AAAAAAAAAABNAgW9x/eDPwpdwr2zUB2/pqc4vHKgeLwAAAAAAAAAAJr6P77BwpO83EIqu254c7nBLwA+SG1bOgAAgD8AAIA/892svdfpIrun+A8+IeIJvmokZbw9m/K+AACAPwAAgD9m/0c9Lv3oO/wOgL4SuMW+3tYKvlcpCj8AAIA/AAAAAGaGOToLHJo/ycA4vBxwEb81/488BzMDPQAAAAAAAAAA+pg5vq+8ST/EbDq+UPDxvha0Kb415BI9AAAAAAAAAABN9MQ9UrTau9B1OL36DCY9hU4mPaJ8CL4AAIA/AACAPw0GvT17wpi6RgHYOq0lzTWOdha6o435uQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01944888888888885, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI8YccECUhpRSlIwBbJRL1owBdJRHQJTI0uXeFcp1fZQoaAZoCWgPQwjfxftxO0RwQJSGlFKUaBVNIAFoFkdAlMlpOzposnV9lChoBmgJaA9DCEUtza0QTEpAlIaUUpRoFUutaBZHQJTJ6PHT7VJ1fZQoaAZoCWgPQwicbtkhvvVxQJSGlFKUaBVLz2gWR0CUyuFvhqCZdX2UKGgGaAloD0MIL90kBoGfc0CUhpRSlGgVS89oFkdAlMs7Gecx03V9lChoBmgJaA9DCAdcV8xIpnFAlIaUUpRoFU0fAWgWR0CUzyaJQ+EAdX2UKGgGaAloD0MIvR5Mio9hcECUhpRSlGgVTTABaBZHQJTPwFGG21F1fZQoaAZoCWgPQwjFxryOON5yQJSGlFKUaBVL42gWR0CU0Bu7HyVfdX2UKGgGaAloD0MI3e16aUo0cUCUhpRSlGgVS+5oFkdAlNGis8xKx3V9lChoBmgJaA9DCHhF8L8VCnBAlIaUUpRoFU0FAWgWR0CU0e0vXbuddX2UKGgGaAloD0MIoUliSTnGb0CUhpRSlGgVS9JoFkdAlNHuXVsk6nV9lChoBmgJaA9DCN3sD5TbW2BAlIaUUpRoFU3oA2gWR0CU0hP/aQFLdX2UKGgGaAloD0MImIbhI+KFYECUhpRSlGgVTegDaBZHQJTSRlGwzLx1fZQoaAZoCWgPQwiLwcO0b9hwQJSGlFKUaBVLzGgWR0CU0nckt29tdX2UKGgGaAloD0MIp86j4j/pcUCUhpRSlGgVS/toFkdAlNMRY/3WWnV9lChoBmgJaA9DCFw8vOcAk3FAlIaUUpRoFUvtaBZHQJTUIPOIInl1fZQoaAZoCWgPQwifIoeIm1hiQJSGlFKUaBVN6ANoFkdAlNRRKxs2vXV9lChoBmgJaA9DCAUzpmDNynJAlIaUUpRoFUvcaBZHQJTUfZ13dKx1fZQoaAZoCWgPQwhQwkzb/0pxQJSGlFKUaBVL8GgWR0CU1W1vl2eQdX2UKGgGaAloD0MI4ezWMtnKcUCUhpRSlGgVTW8BaBZHQJTVnLidat91fZQoaAZoCWgPQwj92CQ/Ir1yQJSGlFKUaBVLwWgWR0CU13DBdld1dX2UKGgGaAloD0MIkfEolXB/bUCUhpRSlGgVS8xoFkdAlNeUeZG8VnV9lChoBmgJaA9DCOW0p+TcPnBAlIaUUpRoFUu3aBZHQJTYeizsyBV1fZQoaAZoCWgPQwhMw/AR8dJyQJSGlFKUaBVNHAFoFkdAlNpg3HaN/HV9lChoBmgJaA9DCHRiD+1jkHBAlIaUUpRoFUvfaBZHQJTbc4ffXPJ1fZQoaAZoCWgPQwjmeXB31mhwQJSGlFKUaBVNAQFoFkdAlNwhsEaESXV9lChoBmgJaA9DCH8uGjKeqW5AlIaUUpRoFU0UAWgWR0CU3IOWSlnAdX2UKGgGaAloD0MICwith+9icECUhpRSlGgVS+BoFkdAlNzAP/aQFXV9lChoBmgJaA9DCPg3aK++v29AlIaUUpRoFUvgaBZHQJTdIM8YAKh1fZQoaAZoCWgPQwjo3sMlR1RtQJSGlFKUaBVLwGgWR0CU3S2QXAM2dX2UKGgGaAloD0MIGlOwxpk+cECUhpRSlGgVS/JoFkdAlN2aVD8cdnV9lChoBmgJaA9DCM3lBkMd9XBAlIaUUpRoFU1UAWgWR0CU3sUCaJAMdX2UKGgGaAloD0MIa54j8t2dckCUhpRSlGgVS9NoFkdAlN9F9fCyhXV9lChoBmgJaA9DCBrCMcueLXNAlIaUUpRoFUvBaBZHQJTffRc/t6Z1fZQoaAZoCWgPQwjrOH6otE5wQJSGlFKUaBVL3GgWR0CU35KzAvcrdX2UKGgGaAloD0MIycwFLk/HckCUhpRSlGgVS8hoFkdAlOGVanrIHXV9lChoBmgJaA9DCJqw/WQM3nBAlIaUUpRoFUvcaBZHQJTiqJZW7vp1fZQoaAZoCWgPQwg9tfrqaolyQJSGlFKUaBVL1WgWR0CU4rmuTzNEdX2UKGgGaAloD0MIQUrs2l7ackCUhpRSlGgVS9loFkdAlOMBfjS5RXV9lChoBmgJaA9DCDwW26TiUXBAlIaUUpRoFUvRaBZHQJTjGCBf8dh1fZQoaAZoCWgPQwhkXHFxFKJyQJSGlFKUaBVLxWgWR0CU4xVmSQo1dX2UKGgGaAloD0MIdXKG4o4lcECUhpRSlGgVS/NoFkdAlOPwEU0vXnV9lChoBmgJaA9DCHoaMEh6xW1AlIaUUpRoFUvKaBZHQJTkQr5IpYt1fZQoaAZoCWgPQwizs+idiodwQJSGlFKUaBVLymgWR0CU5McfvF3qdX2UKGgGaAloD0MIkIR9O8lqcUCUhpRSlGgVTXMBaBZHQJTljeHi3od1fZQoaAZoCWgPQwh8DFac6p1kQJSGlFKUaBVN6ANoFkdAlOXV3Y+SsHV9lChoBmgJaA9DCNiBc0aUDG5AlIaUUpRoFU0lAmgWR0CU5usHjZL7dX2UKGgGaAloD0MIfv0QG+xicECUhpRSlGgVTR8BaBZHQJTnVoEjgQ91fZQoaAZoCWgPQwjPoKF/gt9uQJSGlFKUaBVL82gWR0CU6EIj4YaYdX2UKGgGaAloD0MIKNNocnGBcUCUhpRSlGgVS8xoFkdAlOiWvnr6cnV9lChoBmgJaA9DCJMa2gDsQXBAlIaUUpRoFUvcaBZHQJTonDsMRYl1fZQoaAZoCWgPQwjfbd44KWBvQJSGlFKUaBVL1mgWR0CU6MStvGZNdX2UKGgGaAloD0MIo61KInt4b0CUhpRSlGgVS+FoFkdAlOjL3sXzlXV9lChoBmgJaA9DCJJbk25Lv25AlIaUUpRoFUvgaBZHQJTpD9AHE/B1fZQoaAZoCWgPQwguVP61fHVxQJSGlFKUaBVL62gWR0CU6oBAv+OwdX2UKGgGaAloD0MIQ+T09fzXb0CUhpRSlGgVS+RoFkdAlOrXEyckMXV9lChoBmgJaA9DCMU4fxOK9G5AlIaUUpRoFU0nAWgWR0CU68kt29tedX2UKGgGaAloD0MIWTUIcztBcUCUhpRSlGgVTRUBaBZHQJTtZjEvTPV1fZQoaAZoCWgPQwhhcM0dffZwQJSGlFKUaBVNIAFoFkdAlO1upwS8J3V9lChoBmgJaA9DCHwKgPEMDnJAlIaUUpRoFUv3aBZHQJTuJabF0gd1fZQoaAZoCWgPQwiXqN4aWHRwQJSGlFKUaBVNHwFoFkdAlO72lZX+2nV9lChoBmgJaA9DCGGnWDUIl29AlIaUUpRoFUv5aBZHQJTvTr2QGOd1fZQoaAZoCWgPQwhrYKsECztxQJSGlFKUaBVL7WgWR0CU71TVUdaMdX2UKGgGaAloD0MIi3H+JtQqc0CUhpRSlGgVS+9oFkdAlO+PdRBNVXV9lChoBmgJaA9DCMBatWvCo3BAlIaUUpRoFUvxaBZHQJTv+IuXeFd1fZQoaAZoCWgPQwhLrIxGvvBwQJSGlFKUaBVNBQFoFkdAlPAyzTnaFnV9lChoBmgJaA9DCCqr6XqiF2FAlIaUUpRoFU3oA2gWR0CU8KjkMkQgdX2UKGgGaAloD0MIuXL2zugxY0CUhpRSlGgVTegDaBZHQJTw0TSLIgh1fZQoaAZoCWgPQwjmQA+17TFyQJSGlFKUaBVL4GgWR0CU8QPwNLDidX2UKGgGaAloD0MI/+vctBnmcECUhpRSlGgVTTABaBZHQJTxHeKsMiN1fZQoaAZoCWgPQwjicyfY/1RuQJSGlFKUaBVL3GgWR0CU8gn7pFCtdX2UKGgGaAloD0MIBMsRMlDGcUCUhpRSlGgVS7hoFkdAlPNc2aUiZHV9lChoBmgJaA9DCJ1Jm6q7Z3NAlIaUUpRoFUvVaBZHQJT2MQmNR3x1fZQoaAZoCWgPQwjECOHRxnRvQJSGlFKUaBVNFAFoFkdAlPZfoaDPGHV9lChoBmgJaA9DCPNWXYcqFHBAlIaUUpRoFU0YAWgWR0CU9oRhc7hfdX2UKGgGaAloD0MIXJAty1e1b0CUhpRSlGgVS8loFkdAlPgEal1r7HV9lChoBmgJaA9DCA/UKY/uDXFAlIaUUpRoFU0CAWgWR0CU+DGLDQ7cdX2UKGgGaAloD0MIJCU9DO3dcUCUhpRSlGgVS/VoFkdAlPigtJ4B3nV9lChoBmgJaA9DCHXIzXADgW9AlIaUUpRoFUv9aBZHQJT5SaJAMUh1fZQoaAZoCWgPQwhhjEgUWiZ0QJSGlFKUaBVL7mgWR0CU+iCWeHzpdX2UKGgGaAloD0MIks8rnrrfckCUhpRSlGgVTQcBaBZHQJT6Z1EE1VJ1fZQoaAZoCWgPQwjytWeWxGFyQJSGlFKUaBVNCQFoFkdAlPsVtoBaLXV9lChoBmgJaA9DCG4Xmuu0eG9AlIaUUpRoFUvgaBZHQJT7NhAnlXB1fZQoaAZoCWgPQwjwoxr2+4lwQJSGlFKUaBVLzmgWR0CU/CJ3xFy8dX2UKGgGaAloD0MIpU3VPTJQcECUhpRSlGgVTfkBaBZHQJT8OcMEzO51fZQoaAZoCWgPQwi/RSdLraVsQJSGlFKUaBVNbAFoFkdAlPzi88La3HV9lChoBmgJaA9DCIwQHm2cqXBAlIaUUpRoFUvFaBZHQJT+lyPuG9J1fZQoaAZoCWgPQwgIlE25QgpwQJSGlFKUaBVLyWgWR0CU/qO6unuRdX2UKGgGaAloD0MIL00R4PSNX0CUhpRSlGgVTegDaBZHQJT/Snfl6qt1fZQoaAZoCWgPQwj4G+24oSlwQJSGlFKUaBVLzWgWR0CVAGh5Pdl/dX2UKGgGaAloD0MIWvJ4Wn5kcUCUhpRSlGgVTQEBaBZHQJUApywOe8R1fZQoaAZoCWgPQwh/NJwy9wNzQJSGlFKUaBVLvmgWR0CVANaESM99dX2UKGgGaAloD0MIPEolPKFZbkCUhpRSlGgVS85oFkdAlQDWAbyYonV9lChoBmgJaA9DCCqnPSWnX3FAlIaUUpRoFUvjaBZHQJUBFdKNAC51fZQoaAZoCWgPQwiVm6ilOT1wQJSGlFKUaBVLvGgWR0CVAXJTER8MdX2UKGgGaAloD0MIQDIdOv0WcECUhpRSlGgVS9VoFkdAlQNL9/BnBnV9lChoBmgJaA9DCLJnz2WqYnFAlIaUUpRoFUvJaBZHQJUDusbNr0t1fZQoaAZoCWgPQwhzLVqA9t1xQJSGlFKUaBVL9mgWR0CVBHpiZv1ldX2UKGgGaAloD0MIdvnWh3WHcUCUhpRSlGgVTQYBaBZHQJUEe72+PBB1fZQoaAZoCWgPQwhj0t9LIU9wQJSGlFKUaBVL9WgWR0CVBUfNiYsvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2af99dd1e07b6cfa1727aae8b258ae035165a8eb8d58ddfd9be8cd747934ecf5
|
3 |
+
size 147324
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3c3c87ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3c3c87d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3c3c87dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3c3c87e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe3c3c87ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe3c3c87f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe3c3c8b040>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3c3c8b0d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3c3c8b160>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3c3c8b1f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3c3c8b280>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3c3c8b310>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe3c3c85600>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 917504,
|
47 |
+
"_total_timesteps": 900000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1677384508130593545,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sUrslcLM/9remvvwqzr7zj3Q7kg6XPQAAAAAAAAAAGtGcPV/6MT5EucK8+8FpvmqVGD2WGjS9AAAAAAAAAAAAGAM961CJPY5iC75Jmna+M659vRquzT0AAAAAAAAAAKby073VD6E+qbgUPhC8h74a16Y8eM59PAAAAAAAAAAAZl7wPat6dD9ulyY+S74Rv2qHDj5Alno9AAAAAAAAAAD973G+laMnPmhDHz6eIIW+WxpWu+KeqLwAAAAAAAAAACapNj7OooS8ltLFPVbdLbzs2+69c3ILvQAAgD8AAIA/APAPvtisij3fA4g9KbjXvRG1Br0qNri8AAAAAAAAAABNAgW9x/eDPwpdwr2zUB2/pqc4vHKgeLwAAAAAAAAAAJr6P77BwpO83EIqu254c7nBLwA+SG1bOgAAgD8AAIA/892svdfpIrun+A8+IeIJvmokZbw9m/K+AACAPwAAgD9m/0c9Lv3oO/wOgL4SuMW+3tYKvlcpCj8AAIA/AAAAAGaGOToLHJo/ycA4vBxwEb81/488BzMDPQAAAAAAAAAA+pg5vq+8ST/EbDq+UPDxvha0Kb415BI9AAAAAAAAAABN9MQ9UrTau9B1OL36DCY9hU4mPaJ8CL4AAIA/AACAPw0GvT17wpi6RgHYOq0lzTWOdha6o435uQAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.01944888888888885,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIob/QI8YccECUhpRSlIwBbJRL1owBdJRHQJTI0uXeFcp1fZQoaAZoCWgPQwjfxftxO0RwQJSGlFKUaBVNIAFoFkdAlMlpOzposnV9lChoBmgJaA9DCEUtza0QTEpAlIaUUpRoFUutaBZHQJTJ6PHT7VJ1fZQoaAZoCWgPQwicbtkhvvVxQJSGlFKUaBVLz2gWR0CUyuFvhqCZdX2UKGgGaAloD0MIL90kBoGfc0CUhpRSlGgVS89oFkdAlMs7Gecx03V9lChoBmgJaA9DCAdcV8xIpnFAlIaUUpRoFU0fAWgWR0CUzyaJQ+EAdX2UKGgGaAloD0MIvR5Mio9hcECUhpRSlGgVTTABaBZHQJTPwFGG21F1fZQoaAZoCWgPQwjFxryOON5yQJSGlFKUaBVL42gWR0CU0Bu7HyVfdX2UKGgGaAloD0MI3e16aUo0cUCUhpRSlGgVS+5oFkdAlNGis8xKx3V9lChoBmgJaA9DCHhF8L8VCnBAlIaUUpRoFU0FAWgWR0CU0e0vXbuddX2UKGgGaAloD0MIoUliSTnGb0CUhpRSlGgVS9JoFkdAlNHuXVsk6nV9lChoBmgJaA9DCN3sD5TbW2BAlIaUUpRoFU3oA2gWR0CU0hP/aQFLdX2UKGgGaAloD0MImIbhI+KFYECUhpRSlGgVTegDaBZHQJTSRlGwzLx1fZQoaAZoCWgPQwiLwcO0b9hwQJSGlFKUaBVLzGgWR0CU0nckt29tdX2UKGgGaAloD0MIp86j4j/pcUCUhpRSlGgVS/toFkdAlNMRY/3WWnV9lChoBmgJaA9DCFw8vOcAk3FAlIaUUpRoFUvtaBZHQJTUIPOIInl1fZQoaAZoCWgPQwifIoeIm1hiQJSGlFKUaBVN6ANoFkdAlNRRKxs2vXV9lChoBmgJaA9DCAUzpmDNynJAlIaUUpRoFUvcaBZHQJTUfZ13dKx1fZQoaAZoCWgPQwhQwkzb/0pxQJSGlFKUaBVL8GgWR0CU1W1vl2eQdX2UKGgGaAloD0MI4ezWMtnKcUCUhpRSlGgVTW8BaBZHQJTVnLidat91fZQoaAZoCWgPQwj92CQ/Ir1yQJSGlFKUaBVLwWgWR0CU13DBdld1dX2UKGgGaAloD0MIkfEolXB/bUCUhpRSlGgVS8xoFkdAlNeUeZG8VnV9lChoBmgJaA9DCOW0p+TcPnBAlIaUUpRoFUu3aBZHQJTYeizsyBV1fZQoaAZoCWgPQwhMw/AR8dJyQJSGlFKUaBVNHAFoFkdAlNpg3HaN/HV9lChoBmgJaA9DCHRiD+1jkHBAlIaUUpRoFUvfaBZHQJTbc4ffXPJ1fZQoaAZoCWgPQwjmeXB31mhwQJSGlFKUaBVNAQFoFkdAlNwhsEaESXV9lChoBmgJaA9DCH8uGjKeqW5AlIaUUpRoFU0UAWgWR0CU3IOWSlnAdX2UKGgGaAloD0MICwith+9icECUhpRSlGgVS+BoFkdAlNzAP/aQFXV9lChoBmgJaA9DCPg3aK++v29AlIaUUpRoFUvgaBZHQJTdIM8YAKh1fZQoaAZoCWgPQwjo3sMlR1RtQJSGlFKUaBVLwGgWR0CU3S2QXAM2dX2UKGgGaAloD0MIGlOwxpk+cECUhpRSlGgVS/JoFkdAlN2aVD8cdnV9lChoBmgJaA9DCM3lBkMd9XBAlIaUUpRoFU1UAWgWR0CU3sUCaJAMdX2UKGgGaAloD0MIa54j8t2dckCUhpRSlGgVS9NoFkdAlN9F9fCyhXV9lChoBmgJaA9DCBrCMcueLXNAlIaUUpRoFUvBaBZHQJTffRc/t6Z1fZQoaAZoCWgPQwjrOH6otE5wQJSGlFKUaBVL3GgWR0CU35KzAvcrdX2UKGgGaAloD0MIycwFLk/HckCUhpRSlGgVS8hoFkdAlOGVanrIHXV9lChoBmgJaA9DCJqw/WQM3nBAlIaUUpRoFUvcaBZHQJTiqJZW7vp1fZQoaAZoCWgPQwg9tfrqaolyQJSGlFKUaBVL1WgWR0CU4rmuTzNEdX2UKGgGaAloD0MIQUrs2l7ackCUhpRSlGgVS9loFkdAlOMBfjS5RXV9lChoBmgJaA9DCDwW26TiUXBAlIaUUpRoFUvRaBZHQJTjGCBf8dh1fZQoaAZoCWgPQwhkXHFxFKJyQJSGlFKUaBVLxWgWR0CU4xVmSQo1dX2UKGgGaAloD0MIdXKG4o4lcECUhpRSlGgVS/NoFkdAlOPwEU0vXnV9lChoBmgJaA9DCHoaMEh6xW1AlIaUUpRoFUvKaBZHQJTkQr5IpYt1fZQoaAZoCWgPQwizs+idiodwQJSGlFKUaBVLymgWR0CU5McfvF3qdX2UKGgGaAloD0MIkIR9O8lqcUCUhpRSlGgVTXMBaBZHQJTljeHi3od1fZQoaAZoCWgPQwh8DFac6p1kQJSGlFKUaBVN6ANoFkdAlOXV3Y+SsHV9lChoBmgJaA9DCNiBc0aUDG5AlIaUUpRoFU0lAmgWR0CU5usHjZL7dX2UKGgGaAloD0MIfv0QG+xicECUhpRSlGgVTR8BaBZHQJTnVoEjgQ91fZQoaAZoCWgPQwjPoKF/gt9uQJSGlFKUaBVL82gWR0CU6EIj4YaYdX2UKGgGaAloD0MIKNNocnGBcUCUhpRSlGgVS8xoFkdAlOiWvnr6cnV9lChoBmgJaA9DCJMa2gDsQXBAlIaUUpRoFUvcaBZHQJTonDsMRYl1fZQoaAZoCWgPQwjfbd44KWBvQJSGlFKUaBVL1mgWR0CU6MStvGZNdX2UKGgGaAloD0MIo61KInt4b0CUhpRSlGgVS+FoFkdAlOjL3sXzlXV9lChoBmgJaA9DCJJbk25Lv25AlIaUUpRoFUvgaBZHQJTpD9AHE/B1fZQoaAZoCWgPQwguVP61fHVxQJSGlFKUaBVL62gWR0CU6oBAv+OwdX2UKGgGaAloD0MIQ+T09fzXb0CUhpRSlGgVS+RoFkdAlOrXEyckMXV9lChoBmgJaA9DCMU4fxOK9G5AlIaUUpRoFU0nAWgWR0CU68kt29tedX2UKGgGaAloD0MIWTUIcztBcUCUhpRSlGgVTRUBaBZHQJTtZjEvTPV1fZQoaAZoCWgPQwhhcM0dffZwQJSGlFKUaBVNIAFoFkdAlO1upwS8J3V9lChoBmgJaA9DCHwKgPEMDnJAlIaUUpRoFUv3aBZHQJTuJabF0gd1fZQoaAZoCWgPQwiXqN4aWHRwQJSGlFKUaBVNHwFoFkdAlO72lZX+2nV9lChoBmgJaA9DCGGnWDUIl29AlIaUUpRoFUv5aBZHQJTvTr2QGOd1fZQoaAZoCWgPQwhrYKsECztxQJSGlFKUaBVL7WgWR0CU71TVUdaMdX2UKGgGaAloD0MIi3H+JtQqc0CUhpRSlGgVS+9oFkdAlO+PdRBNVXV9lChoBmgJaA9DCMBatWvCo3BAlIaUUpRoFUvxaBZHQJTv+IuXeFd1fZQoaAZoCWgPQwhLrIxGvvBwQJSGlFKUaBVNBQFoFkdAlPAyzTnaFnV9lChoBmgJaA9DCCqr6XqiF2FAlIaUUpRoFU3oA2gWR0CU8KjkMkQgdX2UKGgGaAloD0MIuXL2zugxY0CUhpRSlGgVTegDaBZHQJTw0TSLIgh1fZQoaAZoCWgPQwjmQA+17TFyQJSGlFKUaBVL4GgWR0CU8QPwNLDidX2UKGgGaAloD0MI/+vctBnmcECUhpRSlGgVTTABaBZHQJTxHeKsMiN1fZQoaAZoCWgPQwjicyfY/1RuQJSGlFKUaBVL3GgWR0CU8gn7pFCtdX2UKGgGaAloD0MIBMsRMlDGcUCUhpRSlGgVS7hoFkdAlPNc2aUiZHV9lChoBmgJaA9DCJ1Jm6q7Z3NAlIaUUpRoFUvVaBZHQJT2MQmNR3x1fZQoaAZoCWgPQwjECOHRxnRvQJSGlFKUaBVNFAFoFkdAlPZfoaDPGHV9lChoBmgJaA9DCPNWXYcqFHBAlIaUUpRoFU0YAWgWR0CU9oRhc7hfdX2UKGgGaAloD0MIXJAty1e1b0CUhpRSlGgVS8loFkdAlPgEal1r7HV9lChoBmgJaA9DCA/UKY/uDXFAlIaUUpRoFU0CAWgWR0CU+DGLDQ7cdX2UKGgGaAloD0MIJCU9DO3dcUCUhpRSlGgVS/VoFkdAlPigtJ4B3nV9lChoBmgJaA9DCHXIzXADgW9AlIaUUpRoFUv9aBZHQJT5SaJAMUh1fZQoaAZoCWgPQwhhjEgUWiZ0QJSGlFKUaBVL7mgWR0CU+iCWeHzpdX2UKGgGaAloD0MIks8rnrrfckCUhpRSlGgVTQcBaBZHQJT6Z1EE1VJ1fZQoaAZoCWgPQwjytWeWxGFyQJSGlFKUaBVNCQFoFkdAlPsVtoBaLXV9lChoBmgJaA9DCG4Xmuu0eG9AlIaUUpRoFUvgaBZHQJT7NhAnlXB1fZQoaAZoCWgPQwjwoxr2+4lwQJSGlFKUaBVLzmgWR0CU/CJ3xFy8dX2UKGgGaAloD0MIpU3VPTJQcECUhpRSlGgVTfkBaBZHQJT8OcMEzO51fZQoaAZoCWgPQwi/RSdLraVsQJSGlFKUaBVNbAFoFkdAlPzi88La3HV9lChoBmgJaA9DCIwQHm2cqXBAlIaUUpRoFUvFaBZHQJT+lyPuG9J1fZQoaAZoCWgPQwgIlE25QgpwQJSGlFKUaBVLyWgWR0CU/qO6unuRdX2UKGgGaAloD0MIL00R4PSNX0CUhpRSlGgVTegDaBZHQJT/Snfl6qt1fZQoaAZoCWgPQwj4G+24oSlwQJSGlFKUaBVLzWgWR0CVAGh5Pdl/dX2UKGgGaAloD0MIWvJ4Wn5kcUCUhpRSlGgVTQEBaBZHQJUApywOe8R1fZQoaAZoCWgPQwh/NJwy9wNzQJSGlFKUaBVLvmgWR0CVANaESM99dX2UKGgGaAloD0MIPEolPKFZbkCUhpRSlGgVS85oFkdAlQDWAbyYonV9lChoBmgJaA9DCCqnPSWnX3FAlIaUUpRoFUvjaBZHQJUBFdKNAC51fZQoaAZoCWgPQwiVm6ilOT1wQJSGlFKUaBVLvGgWR0CVAXJTER8MdX2UKGgGaAloD0MIQDIdOv0WcECUhpRSlGgVS9VoFkdAlQNL9/BnBnV9lChoBmgJaA9DCLJnz2WqYnFAlIaUUpRoFUvJaBZHQJUDusbNr0t1fZQoaAZoCWgPQwhzLVqA9t1xQJSGlFKUaBVL9mgWR0CVBHpiZv1ldX2UKGgGaAloD0MIdvnWh3WHcUCUhpRSlGgVTQYBaBZHQJUEe72+PBB1fZQoaAZoCWgPQwhj0t9LIU9wQJSGlFKUaBVL9WgWR0CVBUfNiYsvdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 280,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjgvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19e72e6d5f4ef7e68e1c590b50e0dce7ebf7a8bf23ae7381b69d092ec2497181
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a332f5ac1d2bd69352cee7e60f79573cb478579fa471831629b6acb46e8ff70d
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.0542025554531, "std_reward": 37.5647224319755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-26T04:33:29.106040"}
|