Update README.md
Browse files
README.md
CHANGED
@@ -1,22 +1,62 @@
|
|
1 |
---
|
2 |
-
base_model:
|
|
|
3 |
language:
|
4 |
- en
|
5 |
license: apache-2.0
|
6 |
tags:
|
7 |
- text-generation-inference
|
8 |
- transformers
|
9 |
-
- unsloth
|
10 |
- mistral
|
11 |
- trl
|
|
|
|
|
12 |
---
|
13 |
|
14 |
-
#
|
|
|
15 |
|
16 |
-
|
17 |
-
-
|
18 |
-
- **Finetuned from model :** unsloth/mistral-nemo-instruct-2407-bnb-4bit
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- mistralai/Mistral-Nemo-Instruct-2407
|
4 |
language:
|
5 |
- en
|
6 |
license: apache-2.0
|
7 |
tags:
|
8 |
- text-generation-inference
|
9 |
- transformers
|
|
|
10 |
- mistral
|
11 |
- trl
|
12 |
+
- cot
|
13 |
+
- guidance
|
14 |
---
|
15 |
|
16 |
+
# fusion-guide
|
17 |
+
[](https://postimg.cc/8jBrCNdH)
|
18 |
|
19 |
+
# Model Overview
|
20 |
+
fusion-guide is an advanced AI reasoning system built on the Mistral-Nemo 12bn architecture. It employs a two-model approach to enhance its problem-solving capabilities. This method involves a "Guide" model that generates a structured, step-by-step plan to solve a given task. This plan is then passed to the primary "Response" model, which uses this guidance to craft an accurate and comprehensive response.
|
|
|
21 |
|
22 |
+
# Model and Data
|
23 |
+
fusion-guide is fine-tuned on a custom dataset consisting of task-based prompts in both English (90%) and German (10%). The tasks vary in complexity, including scenarios designed to be challenging or unsolvable, to enhance the model's ability to handle ambiguous situations. Each training sample follows the structure: prompt => guidance, teaching the model to break down complex tasks systematically.
|
24 |
+
Read a detailed description and evaluation of the model here: https://app.gitbook.com/
|
25 |
|
26 |
+
### Prompt format
|
27 |
+
The prompt must be enclosed within <guidance_prompt>{PROMPT}</guidance_prompt> tags, following the format below:
|
28 |
+
|
29 |
+
<guidance_prompt>Count the number of 'r's in the word 'strawberry,' and then write a Python script that checks if an arbitrary word contains the same number of 'r's.</guidance_prompt>
|
30 |
+
|
31 |
+
# Usage
|
32 |
+
fusion-guide can be used with vLLM and other Mistral-Nemo-compatible inference engines. Below is an example of how to use it with unsloth:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from unsloth import FastLanguageModel
|
36 |
+
|
37 |
+
max_seq_length = 8192 * 1 # Choose any! We auto support RoPE Scaling internally!
|
38 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
39 |
+
load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be False.
|
40 |
+
|
41 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
42 |
+
model_name="fusionbase/fusion-guide-12b-0.1",
|
43 |
+
max_seq_length=max_seq_length,
|
44 |
+
dtype=dtype,
|
45 |
+
load_in_4bit=load_in_4bit
|
46 |
+
)
|
47 |
+
|
48 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
49 |
+
|
50 |
+
messages = [{"role": "user", "content": "<guidance_prompt>Count the number of 'r's in the word 'strawberry,' and then write a Python script that checks if an arbitrary word contains the same number of 'r's.</guidance_prompt>"}]
|
51 |
+
inputs = tokenizer.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
tokenize=True,
|
54 |
+
add_generation_prompt=True, # Must add for generation
|
55 |
+
return_tensors="pt",
|
56 |
+
).to("cuda")
|
57 |
+
|
58 |
+
outputs = model.generate(input_ids=inputs, max_new_tokens=2000, use_cache=True, early_stopping=True, temperature=0)
|
59 |
+
result = tokenizer.batch_decode(outputs)
|
60 |
+
|
61 |
+
print(result[0][len(input_data):].replace("</s>", ""))
|
62 |
+
```
|