Frederico Wieser commited on
Commit
d9187d0
·
1 Parent(s): 1e9efcd

Add checkpoint 400

Browse files
checkpoint-400/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[PAD]": 32000
3
+ }
checkpoint-400/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../models/TinyLlama_v1.1/",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5632,
14
+ "max_position_embeddings": 2048,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 22,
18
+ "num_key_value_heads": 4,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 10000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.37.0",
26
+ "use_cache": true,
27
+ "vocab_size": 32001
28
+ }
checkpoint-400/generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 1,
3
+ "eos_token_id": 2,
4
+ "max_length": 2048,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.37.0"
7
+ }
checkpoint-400/global_step400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5b2e1ab2e327260285090e8b4eb7b7f66333dea52fd76dc5b052e52fb76a435
3
+ size 13200649212
checkpoint-400/global_step400/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda71e99bb5d6c6e251ce3f014f6cb858354cdaa6a7f7d7ad8a745930043594d
3
+ size 2200176684
checkpoint-400/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step400
checkpoint-400/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69a0538984bb3356bb09ef7546245d25550fd9571454f61e6df9a4a8fee3aa94
3
+ size 2200128056
checkpoint-400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e7911c61b285029f7f1103a1d378f05d31f627b28b8eebdaf085464f3779e6e
3
+ size 14244
checkpoint-400/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-400/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-400/tokenizer_config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "[PAD]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<s>",
39
+ "clean_up_tokenization_spaces": false,
40
+ "eos_token": "</s>",
41
+ "legacy": false,
42
+ "model_max_length": 1024,
43
+ "pad_token": "[PAD]",
44
+ "padding_side": "right",
45
+ "sp_model_kwargs": {},
46
+ "spaces_between_special_tokens": false,
47
+ "tokenizer_class": "LlamaTokenizer",
48
+ "unk_token": "<unk>",
49
+ "use_default_system_prompt": false
50
+ }
checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,3221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 3648.62841796875,
3
+ "best_model_checkpoint": "./ckpts/tiny_llama_v1.1/int1-g128/checkpoint-400",
4
+ "epoch": 4.0,
5
+ "eval_steps": 4,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 0.0,
14
+ "loss": 11380.3086,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-05,
20
+ "loss": 12868.3359,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.03,
25
+ "learning_rate": 2e-05,
26
+ "loss": 12883.2969,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.04,
31
+ "learning_rate": 2e-05,
32
+ "loss": 11909.3701,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.04,
37
+ "eval_loss": 10881.7998046875,
38
+ "eval_runtime": 94.8632,
39
+ "eval_samples_per_second": 16.824,
40
+ "eval_steps_per_second": 1.054,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.05,
45
+ "learning_rate": 2e-05,
46
+ "loss": 10834.709,
47
+ "step": 5
48
+ },
49
+ {
50
+ "epoch": 0.06,
51
+ "learning_rate": 2e-05,
52
+ "loss": 11078.376,
53
+ "step": 6
54
+ },
55
+ {
56
+ "epoch": 0.07,
57
+ "learning_rate": 2e-05,
58
+ "loss": 8636.8652,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.08,
63
+ "learning_rate": 2e-05,
64
+ "loss": 9161.7168,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.08,
69
+ "eval_loss": 7404.39404296875,
70
+ "eval_runtime": 95.0792,
71
+ "eval_samples_per_second": 16.786,
72
+ "eval_steps_per_second": 1.052,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.09,
77
+ "learning_rate": 2e-05,
78
+ "loss": 8061.96,
79
+ "step": 9
80
+ },
81
+ {
82
+ "epoch": 0.1,
83
+ "learning_rate": 2e-05,
84
+ "loss": 7025.2109,
85
+ "step": 10
86
+ },
87
+ {
88
+ "epoch": 0.11,
89
+ "learning_rate": 2e-05,
90
+ "loss": 10119.207,
91
+ "step": 11
92
+ },
93
+ {
94
+ "epoch": 0.12,
95
+ "learning_rate": 2e-05,
96
+ "loss": 8901.1523,
97
+ "step": 12
98
+ },
99
+ {
100
+ "epoch": 0.12,
101
+ "eval_loss": 7435.04150390625,
102
+ "eval_runtime": 95.107,
103
+ "eval_samples_per_second": 16.781,
104
+ "eval_steps_per_second": 1.051,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.13,
109
+ "learning_rate": 2e-05,
110
+ "loss": 6522.3311,
111
+ "step": 13
112
+ },
113
+ {
114
+ "epoch": 0.14,
115
+ "learning_rate": 2e-05,
116
+ "loss": 7874.7578,
117
+ "step": 14
118
+ },
119
+ {
120
+ "epoch": 0.15,
121
+ "learning_rate": 2e-05,
122
+ "loss": 7117.9897,
123
+ "step": 15
124
+ },
125
+ {
126
+ "epoch": 0.16,
127
+ "learning_rate": 2e-05,
128
+ "loss": 7384.1929,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.16,
133
+ "eval_loss": 7038.021484375,
134
+ "eval_runtime": 95.1143,
135
+ "eval_samples_per_second": 16.78,
136
+ "eval_steps_per_second": 1.051,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.17,
141
+ "learning_rate": 2e-05,
142
+ "loss": 6837.7974,
143
+ "step": 17
144
+ },
145
+ {
146
+ "epoch": 0.18,
147
+ "learning_rate": 2e-05,
148
+ "loss": 6401.292,
149
+ "step": 18
150
+ },
151
+ {
152
+ "epoch": 0.19,
153
+ "learning_rate": 2e-05,
154
+ "loss": 7396.1997,
155
+ "step": 19
156
+ },
157
+ {
158
+ "epoch": 0.2,
159
+ "learning_rate": 2e-05,
160
+ "loss": 5846.4893,
161
+ "step": 20
162
+ },
163
+ {
164
+ "epoch": 0.2,
165
+ "eval_loss": 6782.6787109375,
166
+ "eval_runtime": 95.1226,
167
+ "eval_samples_per_second": 16.778,
168
+ "eval_steps_per_second": 1.051,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.21,
173
+ "learning_rate": 2e-05,
174
+ "loss": 7062.3677,
175
+ "step": 21
176
+ },
177
+ {
178
+ "epoch": 0.22,
179
+ "learning_rate": 2e-05,
180
+ "loss": 6488.6855,
181
+ "step": 22
182
+ },
183
+ {
184
+ "epoch": 0.23,
185
+ "learning_rate": 2e-05,
186
+ "loss": 7019.1787,
187
+ "step": 23
188
+ },
189
+ {
190
+ "epoch": 0.24,
191
+ "learning_rate": 2e-05,
192
+ "loss": 6871.1865,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.24,
197
+ "eval_loss": 6575.58154296875,
198
+ "eval_runtime": 95.0095,
199
+ "eval_samples_per_second": 16.798,
200
+ "eval_steps_per_second": 1.053,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.25,
205
+ "learning_rate": 2e-05,
206
+ "loss": 6340.9995,
207
+ "step": 25
208
+ },
209
+ {
210
+ "epoch": 0.26,
211
+ "learning_rate": 2e-05,
212
+ "loss": 6536.9585,
213
+ "step": 26
214
+ },
215
+ {
216
+ "epoch": 0.27,
217
+ "learning_rate": 2e-05,
218
+ "loss": 6144.7646,
219
+ "step": 27
220
+ },
221
+ {
222
+ "epoch": 0.28,
223
+ "learning_rate": 2e-05,
224
+ "loss": 6152.7886,
225
+ "step": 28
226
+ },
227
+ {
228
+ "epoch": 0.28,
229
+ "eval_loss": 6434.06640625,
230
+ "eval_runtime": 95.1456,
231
+ "eval_samples_per_second": 16.774,
232
+ "eval_steps_per_second": 1.051,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.29,
237
+ "learning_rate": 2e-05,
238
+ "loss": 5927.832,
239
+ "step": 29
240
+ },
241
+ {
242
+ "epoch": 0.3,
243
+ "learning_rate": 2e-05,
244
+ "loss": 6375.9375,
245
+ "step": 30
246
+ },
247
+ {
248
+ "epoch": 0.31,
249
+ "learning_rate": 2e-05,
250
+ "loss": 6714.1953,
251
+ "step": 31
252
+ },
253
+ {
254
+ "epoch": 0.32,
255
+ "learning_rate": 2e-05,
256
+ "loss": 5591.8081,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.32,
261
+ "eval_loss": 6206.52197265625,
262
+ "eval_runtime": 95.0989,
263
+ "eval_samples_per_second": 16.783,
264
+ "eval_steps_per_second": 1.052,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.33,
269
+ "learning_rate": 2e-05,
270
+ "loss": 6417.4902,
271
+ "step": 33
272
+ },
273
+ {
274
+ "epoch": 0.34,
275
+ "learning_rate": 2e-05,
276
+ "loss": 5807.3662,
277
+ "step": 34
278
+ },
279
+ {
280
+ "epoch": 0.35,
281
+ "learning_rate": 2e-05,
282
+ "loss": 6891.5049,
283
+ "step": 35
284
+ },
285
+ {
286
+ "epoch": 0.36,
287
+ "learning_rate": 2e-05,
288
+ "loss": 6353.3838,
289
+ "step": 36
290
+ },
291
+ {
292
+ "epoch": 0.36,
293
+ "eval_loss": 6035.97705078125,
294
+ "eval_runtime": 95.1008,
295
+ "eval_samples_per_second": 16.782,
296
+ "eval_steps_per_second": 1.052,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.37,
301
+ "learning_rate": 2e-05,
302
+ "loss": 5999.5938,
303
+ "step": 37
304
+ },
305
+ {
306
+ "epoch": 0.38,
307
+ "learning_rate": 2e-05,
308
+ "loss": 5384.0732,
309
+ "step": 38
310
+ },
311
+ {
312
+ "epoch": 0.39,
313
+ "learning_rate": 2e-05,
314
+ "loss": 6043.8564,
315
+ "step": 39
316
+ },
317
+ {
318
+ "epoch": 0.4,
319
+ "learning_rate": 2e-05,
320
+ "loss": 5397.1992,
321
+ "step": 40
322
+ },
323
+ {
324
+ "epoch": 0.4,
325
+ "eval_loss": 5899.00927734375,
326
+ "eval_runtime": 95.1465,
327
+ "eval_samples_per_second": 16.774,
328
+ "eval_steps_per_second": 1.051,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.41,
333
+ "learning_rate": 2e-05,
334
+ "loss": 5770.0815,
335
+ "step": 41
336
+ },
337
+ {
338
+ "epoch": 0.42,
339
+ "learning_rate": 2e-05,
340
+ "loss": 5922.8789,
341
+ "step": 42
342
+ },
343
+ {
344
+ "epoch": 0.43,
345
+ "learning_rate": 2e-05,
346
+ "loss": 5941.6562,
347
+ "step": 43
348
+ },
349
+ {
350
+ "epoch": 0.44,
351
+ "learning_rate": 2e-05,
352
+ "loss": 6474.5508,
353
+ "step": 44
354
+ },
355
+ {
356
+ "epoch": 0.44,
357
+ "eval_loss": 5830.09716796875,
358
+ "eval_runtime": 94.9508,
359
+ "eval_samples_per_second": 16.809,
360
+ "eval_steps_per_second": 1.053,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.45,
365
+ "learning_rate": 2e-05,
366
+ "loss": 6641.1704,
367
+ "step": 45
368
+ },
369
+ {
370
+ "epoch": 0.46,
371
+ "learning_rate": 2e-05,
372
+ "loss": 5292.1631,
373
+ "step": 46
374
+ },
375
+ {
376
+ "epoch": 0.47,
377
+ "learning_rate": 2e-05,
378
+ "loss": 5402.1309,
379
+ "step": 47
380
+ },
381
+ {
382
+ "epoch": 0.48,
383
+ "learning_rate": 2e-05,
384
+ "loss": 5108.5684,
385
+ "step": 48
386
+ },
387
+ {
388
+ "epoch": 0.48,
389
+ "eval_loss": 5756.92724609375,
390
+ "eval_runtime": 95.3749,
391
+ "eval_samples_per_second": 16.734,
392
+ "eval_steps_per_second": 1.048,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.49,
397
+ "learning_rate": 2e-05,
398
+ "loss": 5287.3154,
399
+ "step": 49
400
+ },
401
+ {
402
+ "epoch": 0.5,
403
+ "learning_rate": 2e-05,
404
+ "loss": 5745.0361,
405
+ "step": 50
406
+ },
407
+ {
408
+ "epoch": 0.51,
409
+ "learning_rate": 2e-05,
410
+ "loss": 5594.8262,
411
+ "step": 51
412
+ },
413
+ {
414
+ "epoch": 0.52,
415
+ "learning_rate": 2e-05,
416
+ "loss": 6582.165,
417
+ "step": 52
418
+ },
419
+ {
420
+ "epoch": 0.52,
421
+ "eval_loss": 5648.44091796875,
422
+ "eval_runtime": 95.5253,
423
+ "eval_samples_per_second": 16.708,
424
+ "eval_steps_per_second": 1.047,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.53,
429
+ "learning_rate": 2e-05,
430
+ "loss": 6087.4844,
431
+ "step": 53
432
+ },
433
+ {
434
+ "epoch": 0.54,
435
+ "learning_rate": 2e-05,
436
+ "loss": 6035.2637,
437
+ "step": 54
438
+ },
439
+ {
440
+ "epoch": 0.55,
441
+ "learning_rate": 2e-05,
442
+ "loss": 6145.3789,
443
+ "step": 55
444
+ },
445
+ {
446
+ "epoch": 0.56,
447
+ "learning_rate": 2e-05,
448
+ "loss": 5178.7305,
449
+ "step": 56
450
+ },
451
+ {
452
+ "epoch": 0.56,
453
+ "eval_loss": 5449.46240234375,
454
+ "eval_runtime": 95.1764,
455
+ "eval_samples_per_second": 16.769,
456
+ "eval_steps_per_second": 1.051,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.57,
461
+ "learning_rate": 2e-05,
462
+ "loss": 5329.77,
463
+ "step": 57
464
+ },
465
+ {
466
+ "epoch": 0.58,
467
+ "learning_rate": 2e-05,
468
+ "loss": 6133.9678,
469
+ "step": 58
470
+ },
471
+ {
472
+ "epoch": 0.59,
473
+ "learning_rate": 2e-05,
474
+ "loss": 5170.7642,
475
+ "step": 59
476
+ },
477
+ {
478
+ "epoch": 0.6,
479
+ "learning_rate": 2e-05,
480
+ "loss": 4754.7891,
481
+ "step": 60
482
+ },
483
+ {
484
+ "epoch": 0.6,
485
+ "eval_loss": 5294.06494140625,
486
+ "eval_runtime": 95.2108,
487
+ "eval_samples_per_second": 16.763,
488
+ "eval_steps_per_second": 1.05,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.61,
493
+ "learning_rate": 2e-05,
494
+ "loss": 5026.2295,
495
+ "step": 61
496
+ },
497
+ {
498
+ "epoch": 0.62,
499
+ "learning_rate": 2e-05,
500
+ "loss": 5056.1416,
501
+ "step": 62
502
+ },
503
+ {
504
+ "epoch": 0.63,
505
+ "learning_rate": 2e-05,
506
+ "loss": 4999.1313,
507
+ "step": 63
508
+ },
509
+ {
510
+ "epoch": 0.64,
511
+ "learning_rate": 2e-05,
512
+ "loss": 5597.2129,
513
+ "step": 64
514
+ },
515
+ {
516
+ "epoch": 0.64,
517
+ "eval_loss": 5080.79638671875,
518
+ "eval_runtime": 95.0431,
519
+ "eval_samples_per_second": 16.792,
520
+ "eval_steps_per_second": 1.052,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.65,
525
+ "learning_rate": 2e-05,
526
+ "loss": 5225.0186,
527
+ "step": 65
528
+ },
529
+ {
530
+ "epoch": 0.66,
531
+ "learning_rate": 2e-05,
532
+ "loss": 4696.772,
533
+ "step": 66
534
+ },
535
+ {
536
+ "epoch": 0.67,
537
+ "learning_rate": 2e-05,
538
+ "loss": 4756.3345,
539
+ "step": 67
540
+ },
541
+ {
542
+ "epoch": 0.68,
543
+ "learning_rate": 2e-05,
544
+ "loss": 5449.8564,
545
+ "step": 68
546
+ },
547
+ {
548
+ "epoch": 0.68,
549
+ "eval_loss": 4948.94287109375,
550
+ "eval_runtime": 95.1267,
551
+ "eval_samples_per_second": 16.778,
552
+ "eval_steps_per_second": 1.051,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.69,
557
+ "learning_rate": 2e-05,
558
+ "loss": 5115.0347,
559
+ "step": 69
560
+ },
561
+ {
562
+ "epoch": 0.7,
563
+ "learning_rate": 2e-05,
564
+ "loss": 4621.6206,
565
+ "step": 70
566
+ },
567
+ {
568
+ "epoch": 0.71,
569
+ "learning_rate": 2e-05,
570
+ "loss": 4672.1475,
571
+ "step": 71
572
+ },
573
+ {
574
+ "epoch": 0.72,
575
+ "learning_rate": 2e-05,
576
+ "loss": 5242.2466,
577
+ "step": 72
578
+ },
579
+ {
580
+ "epoch": 0.72,
581
+ "eval_loss": 4875.96826171875,
582
+ "eval_runtime": 95.1339,
583
+ "eval_samples_per_second": 16.776,
584
+ "eval_steps_per_second": 1.051,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.73,
589
+ "learning_rate": 2e-05,
590
+ "loss": 4792.4268,
591
+ "step": 73
592
+ },
593
+ {
594
+ "epoch": 0.74,
595
+ "learning_rate": 2e-05,
596
+ "loss": 4925.5439,
597
+ "step": 74
598
+ },
599
+ {
600
+ "epoch": 0.75,
601
+ "learning_rate": 2e-05,
602
+ "loss": 4519.2134,
603
+ "step": 75
604
+ },
605
+ {
606
+ "epoch": 0.76,
607
+ "learning_rate": 2e-05,
608
+ "loss": 4790.4316,
609
+ "step": 76
610
+ },
611
+ {
612
+ "epoch": 0.76,
613
+ "eval_loss": 4870.0810546875,
614
+ "eval_runtime": 95.1754,
615
+ "eval_samples_per_second": 16.769,
616
+ "eval_steps_per_second": 1.051,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.77,
621
+ "learning_rate": 2e-05,
622
+ "loss": 5035.2295,
623
+ "step": 77
624
+ },
625
+ {
626
+ "epoch": 0.78,
627
+ "learning_rate": 2e-05,
628
+ "loss": 4832.3154,
629
+ "step": 78
630
+ },
631
+ {
632
+ "epoch": 0.79,
633
+ "learning_rate": 2e-05,
634
+ "loss": 5150.7158,
635
+ "step": 79
636
+ },
637
+ {
638
+ "epoch": 0.8,
639
+ "learning_rate": 2e-05,
640
+ "loss": 4470.4863,
641
+ "step": 80
642
+ },
643
+ {
644
+ "epoch": 0.8,
645
+ "eval_loss": 4762.04150390625,
646
+ "eval_runtime": 95.1952,
647
+ "eval_samples_per_second": 16.766,
648
+ "eval_steps_per_second": 1.05,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.81,
653
+ "learning_rate": 2e-05,
654
+ "loss": 4649.1685,
655
+ "step": 81
656
+ },
657
+ {
658
+ "epoch": 0.82,
659
+ "learning_rate": 2e-05,
660
+ "loss": 4672.1406,
661
+ "step": 82
662
+ },
663
+ {
664
+ "epoch": 0.83,
665
+ "learning_rate": 2e-05,
666
+ "loss": 5002.249,
667
+ "step": 83
668
+ },
669
+ {
670
+ "epoch": 0.84,
671
+ "learning_rate": 2e-05,
672
+ "loss": 4852.25,
673
+ "step": 84
674
+ },
675
+ {
676
+ "epoch": 0.84,
677
+ "eval_loss": 4709.67431640625,
678
+ "eval_runtime": 95.0691,
679
+ "eval_samples_per_second": 16.788,
680
+ "eval_steps_per_second": 1.052,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.85,
685
+ "learning_rate": 2e-05,
686
+ "loss": 4892.4893,
687
+ "step": 85
688
+ },
689
+ {
690
+ "epoch": 0.86,
691
+ "learning_rate": 2e-05,
692
+ "loss": 4282.9248,
693
+ "step": 86
694
+ },
695
+ {
696
+ "epoch": 0.87,
697
+ "learning_rate": 2e-05,
698
+ "loss": 4886.5312,
699
+ "step": 87
700
+ },
701
+ {
702
+ "epoch": 0.88,
703
+ "learning_rate": 2e-05,
704
+ "loss": 4792.9912,
705
+ "step": 88
706
+ },
707
+ {
708
+ "epoch": 0.88,
709
+ "eval_loss": 4597.8984375,
710
+ "eval_runtime": 95.2285,
711
+ "eval_samples_per_second": 16.76,
712
+ "eval_steps_per_second": 1.05,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.89,
717
+ "learning_rate": 2e-05,
718
+ "loss": 3879.5151,
719
+ "step": 89
720
+ },
721
+ {
722
+ "epoch": 0.9,
723
+ "learning_rate": 2e-05,
724
+ "loss": 4130.7891,
725
+ "step": 90
726
+ },
727
+ {
728
+ "epoch": 0.91,
729
+ "learning_rate": 2e-05,
730
+ "loss": 4897.5684,
731
+ "step": 91
732
+ },
733
+ {
734
+ "epoch": 0.92,
735
+ "learning_rate": 2e-05,
736
+ "loss": 5063.8096,
737
+ "step": 92
738
+ },
739
+ {
740
+ "epoch": 0.92,
741
+ "eval_loss": 4595.23046875,
742
+ "eval_runtime": 95.2271,
743
+ "eval_samples_per_second": 16.76,
744
+ "eval_steps_per_second": 1.05,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.93,
749
+ "learning_rate": 2e-05,
750
+ "loss": 4932.4224,
751
+ "step": 93
752
+ },
753
+ {
754
+ "epoch": 0.94,
755
+ "learning_rate": 2e-05,
756
+ "loss": 4803.2412,
757
+ "step": 94
758
+ },
759
+ {
760
+ "epoch": 0.95,
761
+ "learning_rate": 2e-05,
762
+ "loss": 4688.5557,
763
+ "step": 95
764
+ },
765
+ {
766
+ "epoch": 0.96,
767
+ "learning_rate": 2e-05,
768
+ "loss": 4638.0762,
769
+ "step": 96
770
+ },
771
+ {
772
+ "epoch": 0.96,
773
+ "eval_loss": 4560.80810546875,
774
+ "eval_runtime": 95.1641,
775
+ "eval_samples_per_second": 16.771,
776
+ "eval_steps_per_second": 1.051,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.97,
781
+ "learning_rate": 2e-05,
782
+ "loss": 4238.0225,
783
+ "step": 97
784
+ },
785
+ {
786
+ "epoch": 0.98,
787
+ "learning_rate": 2e-05,
788
+ "loss": 4853.1382,
789
+ "step": 98
790
+ },
791
+ {
792
+ "epoch": 0.99,
793
+ "learning_rate": 2e-05,
794
+ "loss": 5206.4658,
795
+ "step": 99
796
+ },
797
+ {
798
+ "epoch": 1.0,
799
+ "learning_rate": 2e-05,
800
+ "loss": 3976.3425,
801
+ "step": 100
802
+ },
803
+ {
804
+ "epoch": 1.0,
805
+ "eval_loss": 4543.9541015625,
806
+ "eval_runtime": 95.1889,
807
+ "eval_samples_per_second": 16.767,
808
+ "eval_steps_per_second": 1.051,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 1.01,
813
+ "learning_rate": 2e-05,
814
+ "loss": 4047.6965,
815
+ "step": 101
816
+ },
817
+ {
818
+ "epoch": 1.02,
819
+ "learning_rate": 2e-05,
820
+ "loss": 4423.4912,
821
+ "step": 102
822
+ },
823
+ {
824
+ "epoch": 1.03,
825
+ "learning_rate": 2e-05,
826
+ "loss": 4422.5103,
827
+ "step": 103
828
+ },
829
+ {
830
+ "epoch": 1.04,
831
+ "learning_rate": 2e-05,
832
+ "loss": 4676.5659,
833
+ "step": 104
834
+ },
835
+ {
836
+ "epoch": 1.04,
837
+ "eval_loss": 4510.7314453125,
838
+ "eval_runtime": 95.0706,
839
+ "eval_samples_per_second": 16.788,
840
+ "eval_steps_per_second": 1.052,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 1.05,
845
+ "learning_rate": 2e-05,
846
+ "loss": 4369.8477,
847
+ "step": 105
848
+ },
849
+ {
850
+ "epoch": 1.06,
851
+ "learning_rate": 2e-05,
852
+ "loss": 4672.6108,
853
+ "step": 106
854
+ },
855
+ {
856
+ "epoch": 1.07,
857
+ "learning_rate": 2e-05,
858
+ "loss": 4738.3755,
859
+ "step": 107
860
+ },
861
+ {
862
+ "epoch": 1.08,
863
+ "learning_rate": 2e-05,
864
+ "loss": 4361.5522,
865
+ "step": 108
866
+ },
867
+ {
868
+ "epoch": 1.08,
869
+ "eval_loss": 4447.572265625,
870
+ "eval_runtime": 95.1237,
871
+ "eval_samples_per_second": 16.778,
872
+ "eval_steps_per_second": 1.051,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 1.09,
877
+ "learning_rate": 2e-05,
878
+ "loss": 4602.5703,
879
+ "step": 109
880
+ },
881
+ {
882
+ "epoch": 1.1,
883
+ "learning_rate": 2e-05,
884
+ "loss": 4380.708,
885
+ "step": 110
886
+ },
887
+ {
888
+ "epoch": 1.11,
889
+ "learning_rate": 2e-05,
890
+ "loss": 4037.3726,
891
+ "step": 111
892
+ },
893
+ {
894
+ "epoch": 1.12,
895
+ "learning_rate": 2e-05,
896
+ "loss": 4673.7178,
897
+ "step": 112
898
+ },
899
+ {
900
+ "epoch": 1.12,
901
+ "eval_loss": 4398.06640625,
902
+ "eval_runtime": 95.1992,
903
+ "eval_samples_per_second": 16.765,
904
+ "eval_steps_per_second": 1.05,
905
+ "step": 112
906
+ },
907
+ {
908
+ "epoch": 1.13,
909
+ "learning_rate": 2e-05,
910
+ "loss": 4349.0542,
911
+ "step": 113
912
+ },
913
+ {
914
+ "epoch": 1.14,
915
+ "learning_rate": 2e-05,
916
+ "loss": 4754.3525,
917
+ "step": 114
918
+ },
919
+ {
920
+ "epoch": 1.15,
921
+ "learning_rate": 2e-05,
922
+ "loss": 3983.9561,
923
+ "step": 115
924
+ },
925
+ {
926
+ "epoch": 1.16,
927
+ "learning_rate": 2e-05,
928
+ "loss": 3387.5273,
929
+ "step": 116
930
+ },
931
+ {
932
+ "epoch": 1.16,
933
+ "eval_loss": 4363.39501953125,
934
+ "eval_runtime": 95.226,
935
+ "eval_samples_per_second": 16.76,
936
+ "eval_steps_per_second": 1.05,
937
+ "step": 116
938
+ },
939
+ {
940
+ "epoch": 1.17,
941
+ "learning_rate": 2e-05,
942
+ "loss": 4539.5605,
943
+ "step": 117
944
+ },
945
+ {
946
+ "epoch": 1.18,
947
+ "learning_rate": 2e-05,
948
+ "loss": 4573.0249,
949
+ "step": 118
950
+ },
951
+ {
952
+ "epoch": 1.19,
953
+ "learning_rate": 2e-05,
954
+ "loss": 4173.1982,
955
+ "step": 119
956
+ },
957
+ {
958
+ "epoch": 1.2,
959
+ "learning_rate": 2e-05,
960
+ "loss": 4301.8296,
961
+ "step": 120
962
+ },
963
+ {
964
+ "epoch": 1.2,
965
+ "eval_loss": 4314.70166015625,
966
+ "eval_runtime": 95.1567,
967
+ "eval_samples_per_second": 16.772,
968
+ "eval_steps_per_second": 1.051,
969
+ "step": 120
970
+ },
971
+ {
972
+ "epoch": 1.21,
973
+ "learning_rate": 2e-05,
974
+ "loss": 4462.0898,
975
+ "step": 121
976
+ },
977
+ {
978
+ "epoch": 1.22,
979
+ "learning_rate": 2e-05,
980
+ "loss": 4151.0615,
981
+ "step": 122
982
+ },
983
+ {
984
+ "epoch": 1.23,
985
+ "learning_rate": 2e-05,
986
+ "loss": 4575.5889,
987
+ "step": 123
988
+ },
989
+ {
990
+ "epoch": 1.24,
991
+ "learning_rate": 2e-05,
992
+ "loss": 4630.2876,
993
+ "step": 124
994
+ },
995
+ {
996
+ "epoch": 1.24,
997
+ "eval_loss": 4325.21875,
998
+ "eval_runtime": 95.0575,
999
+ "eval_samples_per_second": 16.79,
1000
+ "eval_steps_per_second": 1.052,
1001
+ "step": 124
1002
+ },
1003
+ {
1004
+ "epoch": 1.25,
1005
+ "learning_rate": 2e-05,
1006
+ "loss": 4619.9248,
1007
+ "step": 125
1008
+ },
1009
+ {
1010
+ "epoch": 1.26,
1011
+ "learning_rate": 2e-05,
1012
+ "loss": 3764.6904,
1013
+ "step": 126
1014
+ },
1015
+ {
1016
+ "epoch": 1.27,
1017
+ "learning_rate": 2e-05,
1018
+ "loss": 4107.4839,
1019
+ "step": 127
1020
+ },
1021
+ {
1022
+ "epoch": 1.28,
1023
+ "learning_rate": 2e-05,
1024
+ "loss": 4439.1548,
1025
+ "step": 128
1026
+ },
1027
+ {
1028
+ "epoch": 1.28,
1029
+ "eval_loss": 4270.97998046875,
1030
+ "eval_runtime": 95.2025,
1031
+ "eval_samples_per_second": 16.764,
1032
+ "eval_steps_per_second": 1.05,
1033
+ "step": 128
1034
+ },
1035
+ {
1036
+ "epoch": 1.29,
1037
+ "learning_rate": 2e-05,
1038
+ "loss": 4332.3652,
1039
+ "step": 129
1040
+ },
1041
+ {
1042
+ "epoch": 1.3,
1043
+ "learning_rate": 2e-05,
1044
+ "loss": 4009.8579,
1045
+ "step": 130
1046
+ },
1047
+ {
1048
+ "epoch": 1.31,
1049
+ "learning_rate": 2e-05,
1050
+ "loss": 4263.3091,
1051
+ "step": 131
1052
+ },
1053
+ {
1054
+ "epoch": 1.32,
1055
+ "learning_rate": 2e-05,
1056
+ "loss": 4529.6118,
1057
+ "step": 132
1058
+ },
1059
+ {
1060
+ "epoch": 1.32,
1061
+ "eval_loss": 4247.3193359375,
1062
+ "eval_runtime": 95.1903,
1063
+ "eval_samples_per_second": 16.766,
1064
+ "eval_steps_per_second": 1.051,
1065
+ "step": 132
1066
+ },
1067
+ {
1068
+ "epoch": 1.33,
1069
+ "learning_rate": 2e-05,
1070
+ "loss": 4782.1045,
1071
+ "step": 133
1072
+ },
1073
+ {
1074
+ "epoch": 1.34,
1075
+ "learning_rate": 2e-05,
1076
+ "loss": 4572.3145,
1077
+ "step": 134
1078
+ },
1079
+ {
1080
+ "epoch": 1.35,
1081
+ "learning_rate": 2e-05,
1082
+ "loss": 3709.7561,
1083
+ "step": 135
1084
+ },
1085
+ {
1086
+ "epoch": 1.36,
1087
+ "learning_rate": 2e-05,
1088
+ "loss": 5060.5757,
1089
+ "step": 136
1090
+ },
1091
+ {
1092
+ "epoch": 1.36,
1093
+ "eval_loss": 4267.9052734375,
1094
+ "eval_runtime": 95.2344,
1095
+ "eval_samples_per_second": 16.759,
1096
+ "eval_steps_per_second": 1.05,
1097
+ "step": 136
1098
+ },
1099
+ {
1100
+ "epoch": 1.37,
1101
+ "learning_rate": 2e-05,
1102
+ "loss": 4048.5073,
1103
+ "step": 137
1104
+ },
1105
+ {
1106
+ "epoch": 1.38,
1107
+ "learning_rate": 2e-05,
1108
+ "loss": 4337.002,
1109
+ "step": 138
1110
+ },
1111
+ {
1112
+ "epoch": 1.39,
1113
+ "learning_rate": 2e-05,
1114
+ "loss": 4471.6353,
1115
+ "step": 139
1116
+ },
1117
+ {
1118
+ "epoch": 1.4,
1119
+ "learning_rate": 2e-05,
1120
+ "loss": 4257.4619,
1121
+ "step": 140
1122
+ },
1123
+ {
1124
+ "epoch": 1.4,
1125
+ "eval_loss": 4241.09912109375,
1126
+ "eval_runtime": 95.1639,
1127
+ "eval_samples_per_second": 16.771,
1128
+ "eval_steps_per_second": 1.051,
1129
+ "step": 140
1130
+ },
1131
+ {
1132
+ "epoch": 1.41,
1133
+ "learning_rate": 2e-05,
1134
+ "loss": 4113.8926,
1135
+ "step": 141
1136
+ },
1137
+ {
1138
+ "epoch": 1.42,
1139
+ "learning_rate": 2e-05,
1140
+ "loss": 4255.1045,
1141
+ "step": 142
1142
+ },
1143
+ {
1144
+ "epoch": 1.43,
1145
+ "learning_rate": 2e-05,
1146
+ "loss": 4150.0469,
1147
+ "step": 143
1148
+ },
1149
+ {
1150
+ "epoch": 1.44,
1151
+ "learning_rate": 2e-05,
1152
+ "loss": 4069.4043,
1153
+ "step": 144
1154
+ },
1155
+ {
1156
+ "epoch": 1.44,
1157
+ "eval_loss": 4201.818359375,
1158
+ "eval_runtime": 95.2146,
1159
+ "eval_samples_per_second": 16.762,
1160
+ "eval_steps_per_second": 1.05,
1161
+ "step": 144
1162
+ },
1163
+ {
1164
+ "epoch": 1.45,
1165
+ "learning_rate": 2e-05,
1166
+ "loss": 4251.7646,
1167
+ "step": 145
1168
+ },
1169
+ {
1170
+ "epoch": 1.46,
1171
+ "learning_rate": 2e-05,
1172
+ "loss": 4371.7056,
1173
+ "step": 146
1174
+ },
1175
+ {
1176
+ "epoch": 1.47,
1177
+ "learning_rate": 2e-05,
1178
+ "loss": 4043.783,
1179
+ "step": 147
1180
+ },
1181
+ {
1182
+ "epoch": 1.48,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 3856.8018,
1185
+ "step": 148
1186
+ },
1187
+ {
1188
+ "epoch": 1.48,
1189
+ "eval_loss": 4195.00439453125,
1190
+ "eval_runtime": 95.3553,
1191
+ "eval_samples_per_second": 16.737,
1192
+ "eval_steps_per_second": 1.049,
1193
+ "step": 148
1194
+ },
1195
+ {
1196
+ "epoch": 1.49,
1197
+ "learning_rate": 2e-05,
1198
+ "loss": 4359.2188,
1199
+ "step": 149
1200
+ },
1201
+ {
1202
+ "epoch": 1.5,
1203
+ "learning_rate": 2e-05,
1204
+ "loss": 4015.7729,
1205
+ "step": 150
1206
+ },
1207
+ {
1208
+ "epoch": 1.51,
1209
+ "learning_rate": 2e-05,
1210
+ "loss": 4574.147,
1211
+ "step": 151
1212
+ },
1213
+ {
1214
+ "epoch": 1.52,
1215
+ "learning_rate": 2e-05,
1216
+ "loss": 4308.5566,
1217
+ "step": 152
1218
+ },
1219
+ {
1220
+ "epoch": 1.52,
1221
+ "eval_loss": 4192.68798828125,
1222
+ "eval_runtime": 95.3592,
1223
+ "eval_samples_per_second": 16.737,
1224
+ "eval_steps_per_second": 1.049,
1225
+ "step": 152
1226
+ },
1227
+ {
1228
+ "epoch": 1.53,
1229
+ "learning_rate": 2e-05,
1230
+ "loss": 3850.4014,
1231
+ "step": 153
1232
+ },
1233
+ {
1234
+ "epoch": 1.54,
1235
+ "learning_rate": 2e-05,
1236
+ "loss": 4326.3857,
1237
+ "step": 154
1238
+ },
1239
+ {
1240
+ "epoch": 1.55,
1241
+ "learning_rate": 2e-05,
1242
+ "loss": 4223.0674,
1243
+ "step": 155
1244
+ },
1245
+ {
1246
+ "epoch": 1.56,
1247
+ "learning_rate": 2e-05,
1248
+ "loss": 4567.7056,
1249
+ "step": 156
1250
+ },
1251
+ {
1252
+ "epoch": 1.56,
1253
+ "eval_loss": 4181.10009765625,
1254
+ "eval_runtime": 95.2118,
1255
+ "eval_samples_per_second": 16.763,
1256
+ "eval_steps_per_second": 1.05,
1257
+ "step": 156
1258
+ },
1259
+ {
1260
+ "epoch": 1.57,
1261
+ "learning_rate": 2e-05,
1262
+ "loss": 4342.7461,
1263
+ "step": 157
1264
+ },
1265
+ {
1266
+ "epoch": 1.58,
1267
+ "learning_rate": 2e-05,
1268
+ "loss": 3950.2617,
1269
+ "step": 158
1270
+ },
1271
+ {
1272
+ "epoch": 1.59,
1273
+ "learning_rate": 2e-05,
1274
+ "loss": 3843.9983,
1275
+ "step": 159
1276
+ },
1277
+ {
1278
+ "epoch": 1.6,
1279
+ "learning_rate": 2e-05,
1280
+ "loss": 4143.4326,
1281
+ "step": 160
1282
+ },
1283
+ {
1284
+ "epoch": 1.6,
1285
+ "eval_loss": 4187.84912109375,
1286
+ "eval_runtime": 95.4267,
1287
+ "eval_samples_per_second": 16.725,
1288
+ "eval_steps_per_second": 1.048,
1289
+ "step": 160
1290
+ },
1291
+ {
1292
+ "epoch": 1.61,
1293
+ "learning_rate": 2e-05,
1294
+ "loss": 5007.4238,
1295
+ "step": 161
1296
+ },
1297
+ {
1298
+ "epoch": 1.62,
1299
+ "learning_rate": 2e-05,
1300
+ "loss": 4008.7954,
1301
+ "step": 162
1302
+ },
1303
+ {
1304
+ "epoch": 1.63,
1305
+ "learning_rate": 2e-05,
1306
+ "loss": 3739.9316,
1307
+ "step": 163
1308
+ },
1309
+ {
1310
+ "epoch": 1.64,
1311
+ "learning_rate": 2e-05,
1312
+ "loss": 3865.8225,
1313
+ "step": 164
1314
+ },
1315
+ {
1316
+ "epoch": 1.64,
1317
+ "eval_loss": 4126.61669921875,
1318
+ "eval_runtime": 95.1828,
1319
+ "eval_samples_per_second": 16.768,
1320
+ "eval_steps_per_second": 1.051,
1321
+ "step": 164
1322
+ },
1323
+ {
1324
+ "epoch": 1.65,
1325
+ "learning_rate": 2e-05,
1326
+ "loss": 4461.7637,
1327
+ "step": 165
1328
+ },
1329
+ {
1330
+ "epoch": 1.66,
1331
+ "learning_rate": 2e-05,
1332
+ "loss": 3879.4729,
1333
+ "step": 166
1334
+ },
1335
+ {
1336
+ "epoch": 1.67,
1337
+ "learning_rate": 2e-05,
1338
+ "loss": 3731.812,
1339
+ "step": 167
1340
+ },
1341
+ {
1342
+ "epoch": 1.68,
1343
+ "learning_rate": 2e-05,
1344
+ "loss": 4175.4346,
1345
+ "step": 168
1346
+ },
1347
+ {
1348
+ "epoch": 1.68,
1349
+ "eval_loss": 4113.404296875,
1350
+ "eval_runtime": 95.5754,
1351
+ "eval_samples_per_second": 16.699,
1352
+ "eval_steps_per_second": 1.046,
1353
+ "step": 168
1354
+ },
1355
+ {
1356
+ "epoch": 1.69,
1357
+ "learning_rate": 2e-05,
1358
+ "loss": 3942.5459,
1359
+ "step": 169
1360
+ },
1361
+ {
1362
+ "epoch": 1.7,
1363
+ "learning_rate": 2e-05,
1364
+ "loss": 4637.8037,
1365
+ "step": 170
1366
+ },
1367
+ {
1368
+ "epoch": 1.71,
1369
+ "learning_rate": 2e-05,
1370
+ "loss": 4628.354,
1371
+ "step": 171
1372
+ },
1373
+ {
1374
+ "epoch": 1.72,
1375
+ "learning_rate": 2e-05,
1376
+ "loss": 4403.8843,
1377
+ "step": 172
1378
+ },
1379
+ {
1380
+ "epoch": 1.72,
1381
+ "eval_loss": 4094.84375,
1382
+ "eval_runtime": 95.3998,
1383
+ "eval_samples_per_second": 16.73,
1384
+ "eval_steps_per_second": 1.048,
1385
+ "step": 172
1386
+ },
1387
+ {
1388
+ "epoch": 1.73,
1389
+ "learning_rate": 2e-05,
1390
+ "loss": 3811.9785,
1391
+ "step": 173
1392
+ },
1393
+ {
1394
+ "epoch": 1.74,
1395
+ "learning_rate": 2e-05,
1396
+ "loss": 4257.5371,
1397
+ "step": 174
1398
+ },
1399
+ {
1400
+ "epoch": 1.75,
1401
+ "learning_rate": 2e-05,
1402
+ "loss": 3668.6951,
1403
+ "step": 175
1404
+ },
1405
+ {
1406
+ "epoch": 1.76,
1407
+ "learning_rate": 2e-05,
1408
+ "loss": 3921.7227,
1409
+ "step": 176
1410
+ },
1411
+ {
1412
+ "epoch": 1.76,
1413
+ "eval_loss": 4081.22021484375,
1414
+ "eval_runtime": 95.4773,
1415
+ "eval_samples_per_second": 16.716,
1416
+ "eval_steps_per_second": 1.047,
1417
+ "step": 176
1418
+ },
1419
+ {
1420
+ "epoch": 1.77,
1421
+ "learning_rate": 2e-05,
1422
+ "loss": 3529.4546,
1423
+ "step": 177
1424
+ },
1425
+ {
1426
+ "epoch": 1.78,
1427
+ "learning_rate": 2e-05,
1428
+ "loss": 4019.564,
1429
+ "step": 178
1430
+ },
1431
+ {
1432
+ "epoch": 1.79,
1433
+ "learning_rate": 2e-05,
1434
+ "loss": 4207.9526,
1435
+ "step": 179
1436
+ },
1437
+ {
1438
+ "epoch": 1.8,
1439
+ "learning_rate": 2e-05,
1440
+ "loss": 4506.7544,
1441
+ "step": 180
1442
+ },
1443
+ {
1444
+ "epoch": 1.8,
1445
+ "eval_loss": 4089.59033203125,
1446
+ "eval_runtime": 95.5353,
1447
+ "eval_samples_per_second": 16.706,
1448
+ "eval_steps_per_second": 1.047,
1449
+ "step": 180
1450
+ },
1451
+ {
1452
+ "epoch": 1.81,
1453
+ "learning_rate": 2e-05,
1454
+ "loss": 3739.2524,
1455
+ "step": 181
1456
+ },
1457
+ {
1458
+ "epoch": 1.82,
1459
+ "learning_rate": 2e-05,
1460
+ "loss": 4080.3894,
1461
+ "step": 182
1462
+ },
1463
+ {
1464
+ "epoch": 1.83,
1465
+ "learning_rate": 2e-05,
1466
+ "loss": 3937.1353,
1467
+ "step": 183
1468
+ },
1469
+ {
1470
+ "epoch": 1.84,
1471
+ "learning_rate": 2e-05,
1472
+ "loss": 4788.46,
1473
+ "step": 184
1474
+ },
1475
+ {
1476
+ "epoch": 1.84,
1477
+ "eval_loss": 4071.869140625,
1478
+ "eval_runtime": 95.2152,
1479
+ "eval_samples_per_second": 16.762,
1480
+ "eval_steps_per_second": 1.05,
1481
+ "step": 184
1482
+ },
1483
+ {
1484
+ "epoch": 1.85,
1485
+ "learning_rate": 2e-05,
1486
+ "loss": 3903.95,
1487
+ "step": 185
1488
+ },
1489
+ {
1490
+ "epoch": 1.86,
1491
+ "learning_rate": 2e-05,
1492
+ "loss": 4017.4819,
1493
+ "step": 186
1494
+ },
1495
+ {
1496
+ "epoch": 1.87,
1497
+ "learning_rate": 2e-05,
1498
+ "loss": 3605.0239,
1499
+ "step": 187
1500
+ },
1501
+ {
1502
+ "epoch": 1.88,
1503
+ "learning_rate": 2e-05,
1504
+ "loss": 4021.0627,
1505
+ "step": 188
1506
+ },
1507
+ {
1508
+ "epoch": 1.88,
1509
+ "eval_loss": 4055.228271484375,
1510
+ "eval_runtime": 95.2891,
1511
+ "eval_samples_per_second": 16.749,
1512
+ "eval_steps_per_second": 1.049,
1513
+ "step": 188
1514
+ },
1515
+ {
1516
+ "epoch": 1.89,
1517
+ "learning_rate": 2e-05,
1518
+ "loss": 3843.1729,
1519
+ "step": 189
1520
+ },
1521
+ {
1522
+ "epoch": 1.9,
1523
+ "learning_rate": 2e-05,
1524
+ "loss": 3957.4761,
1525
+ "step": 190
1526
+ },
1527
+ {
1528
+ "epoch": 1.91,
1529
+ "learning_rate": 2e-05,
1530
+ "loss": 4018.5742,
1531
+ "step": 191
1532
+ },
1533
+ {
1534
+ "epoch": 1.92,
1535
+ "learning_rate": 2e-05,
1536
+ "loss": 3802.7734,
1537
+ "step": 192
1538
+ },
1539
+ {
1540
+ "epoch": 1.92,
1541
+ "eval_loss": 4049.432373046875,
1542
+ "eval_runtime": 95.3586,
1543
+ "eval_samples_per_second": 16.737,
1544
+ "eval_steps_per_second": 1.049,
1545
+ "step": 192
1546
+ },
1547
+ {
1548
+ "epoch": 1.93,
1549
+ "learning_rate": 2e-05,
1550
+ "loss": 4562.4453,
1551
+ "step": 193
1552
+ },
1553
+ {
1554
+ "epoch": 1.94,
1555
+ "learning_rate": 2e-05,
1556
+ "loss": 3944.2036,
1557
+ "step": 194
1558
+ },
1559
+ {
1560
+ "epoch": 1.95,
1561
+ "learning_rate": 2e-05,
1562
+ "loss": 4023.9956,
1563
+ "step": 195
1564
+ },
1565
+ {
1566
+ "epoch": 1.96,
1567
+ "learning_rate": 2e-05,
1568
+ "loss": 4351.9863,
1569
+ "step": 196
1570
+ },
1571
+ {
1572
+ "epoch": 1.96,
1573
+ "eval_loss": 4015.07373046875,
1574
+ "eval_runtime": 95.1955,
1575
+ "eval_samples_per_second": 16.766,
1576
+ "eval_steps_per_second": 1.05,
1577
+ "step": 196
1578
+ },
1579
+ {
1580
+ "epoch": 1.97,
1581
+ "learning_rate": 2e-05,
1582
+ "loss": 3598.9106,
1583
+ "step": 197
1584
+ },
1585
+ {
1586
+ "epoch": 1.98,
1587
+ "learning_rate": 2e-05,
1588
+ "loss": 3748.6475,
1589
+ "step": 198
1590
+ },
1591
+ {
1592
+ "epoch": 1.99,
1593
+ "learning_rate": 2e-05,
1594
+ "loss": 3714.1748,
1595
+ "step": 199
1596
+ },
1597
+ {
1598
+ "epoch": 2.0,
1599
+ "learning_rate": 2e-05,
1600
+ "loss": 4423.7349,
1601
+ "step": 200
1602
+ },
1603
+ {
1604
+ "epoch": 2.0,
1605
+ "eval_loss": 4013.801025390625,
1606
+ "eval_runtime": 95.1615,
1607
+ "eval_samples_per_second": 16.771,
1608
+ "eval_steps_per_second": 1.051,
1609
+ "step": 200
1610
+ },
1611
+ {
1612
+ "epoch": 2.01,
1613
+ "learning_rate": 2e-05,
1614
+ "loss": 3955.9373,
1615
+ "step": 201
1616
+ },
1617
+ {
1618
+ "epoch": 2.02,
1619
+ "learning_rate": 2e-05,
1620
+ "loss": 4049.354,
1621
+ "step": 202
1622
+ },
1623
+ {
1624
+ "epoch": 2.03,
1625
+ "learning_rate": 2e-05,
1626
+ "loss": 4312.8247,
1627
+ "step": 203
1628
+ },
1629
+ {
1630
+ "epoch": 2.04,
1631
+ "learning_rate": 2e-05,
1632
+ "loss": 3894.739,
1633
+ "step": 204
1634
+ },
1635
+ {
1636
+ "epoch": 2.04,
1637
+ "eval_loss": 4020.21240234375,
1638
+ "eval_runtime": 94.9862,
1639
+ "eval_samples_per_second": 16.802,
1640
+ "eval_steps_per_second": 1.053,
1641
+ "step": 204
1642
+ },
1643
+ {
1644
+ "epoch": 2.05,
1645
+ "learning_rate": 2e-05,
1646
+ "loss": 3237.6282,
1647
+ "step": 205
1648
+ },
1649
+ {
1650
+ "epoch": 2.06,
1651
+ "learning_rate": 2e-05,
1652
+ "loss": 4196.6562,
1653
+ "step": 206
1654
+ },
1655
+ {
1656
+ "epoch": 2.07,
1657
+ "learning_rate": 2e-05,
1658
+ "loss": 4185.1821,
1659
+ "step": 207
1660
+ },
1661
+ {
1662
+ "epoch": 2.08,
1663
+ "learning_rate": 2e-05,
1664
+ "loss": 3637.6782,
1665
+ "step": 208
1666
+ },
1667
+ {
1668
+ "epoch": 2.08,
1669
+ "eval_loss": 4004.71826171875,
1670
+ "eval_runtime": 95.0911,
1671
+ "eval_samples_per_second": 16.784,
1672
+ "eval_steps_per_second": 1.052,
1673
+ "step": 208
1674
+ },
1675
+ {
1676
+ "epoch": 2.09,
1677
+ "learning_rate": 2e-05,
1678
+ "loss": 3988.9346,
1679
+ "step": 209
1680
+ },
1681
+ {
1682
+ "epoch": 2.1,
1683
+ "learning_rate": 2e-05,
1684
+ "loss": 3972.2412,
1685
+ "step": 210
1686
+ },
1687
+ {
1688
+ "epoch": 2.11,
1689
+ "learning_rate": 2e-05,
1690
+ "loss": 4046.356,
1691
+ "step": 211
1692
+ },
1693
+ {
1694
+ "epoch": 2.12,
1695
+ "learning_rate": 2e-05,
1696
+ "loss": 4103.7446,
1697
+ "step": 212
1698
+ },
1699
+ {
1700
+ "epoch": 2.12,
1701
+ "eval_loss": 3999.879150390625,
1702
+ "eval_runtime": 95.151,
1703
+ "eval_samples_per_second": 16.773,
1704
+ "eval_steps_per_second": 1.051,
1705
+ "step": 212
1706
+ },
1707
+ {
1708
+ "epoch": 2.13,
1709
+ "learning_rate": 2e-05,
1710
+ "loss": 4567.3848,
1711
+ "step": 213
1712
+ },
1713
+ {
1714
+ "epoch": 2.14,
1715
+ "learning_rate": 2e-05,
1716
+ "loss": 4096.2393,
1717
+ "step": 214
1718
+ },
1719
+ {
1720
+ "epoch": 2.15,
1721
+ "learning_rate": 2e-05,
1722
+ "loss": 3677.2112,
1723
+ "step": 215
1724
+ },
1725
+ {
1726
+ "epoch": 2.16,
1727
+ "learning_rate": 2e-05,
1728
+ "loss": 3869.1951,
1729
+ "step": 216
1730
+ },
1731
+ {
1732
+ "epoch": 2.16,
1733
+ "eval_loss": 3975.71240234375,
1734
+ "eval_runtime": 95.223,
1735
+ "eval_samples_per_second": 16.761,
1736
+ "eval_steps_per_second": 1.05,
1737
+ "step": 216
1738
+ },
1739
+ {
1740
+ "epoch": 2.17,
1741
+ "learning_rate": 2e-05,
1742
+ "loss": 4281.8516,
1743
+ "step": 217
1744
+ },
1745
+ {
1746
+ "epoch": 2.18,
1747
+ "learning_rate": 2e-05,
1748
+ "loss": 4052.2227,
1749
+ "step": 218
1750
+ },
1751
+ {
1752
+ "epoch": 2.19,
1753
+ "learning_rate": 2e-05,
1754
+ "loss": 4156.7637,
1755
+ "step": 219
1756
+ },
1757
+ {
1758
+ "epoch": 2.2,
1759
+ "learning_rate": 2e-05,
1760
+ "loss": 3435.3076,
1761
+ "step": 220
1762
+ },
1763
+ {
1764
+ "epoch": 2.2,
1765
+ "eval_loss": 3955.1552734375,
1766
+ "eval_runtime": 95.1337,
1767
+ "eval_samples_per_second": 16.776,
1768
+ "eval_steps_per_second": 1.051,
1769
+ "step": 220
1770
+ },
1771
+ {
1772
+ "epoch": 2.21,
1773
+ "learning_rate": 2e-05,
1774
+ "loss": 3932.6658,
1775
+ "step": 221
1776
+ },
1777
+ {
1778
+ "epoch": 2.22,
1779
+ "learning_rate": 2e-05,
1780
+ "loss": 3382.2915,
1781
+ "step": 222
1782
+ },
1783
+ {
1784
+ "epoch": 2.23,
1785
+ "learning_rate": 2e-05,
1786
+ "loss": 3378.9287,
1787
+ "step": 223
1788
+ },
1789
+ {
1790
+ "epoch": 2.24,
1791
+ "learning_rate": 2e-05,
1792
+ "loss": 3811.2612,
1793
+ "step": 224
1794
+ },
1795
+ {
1796
+ "epoch": 2.24,
1797
+ "eval_loss": 3958.28759765625,
1798
+ "eval_runtime": 94.998,
1799
+ "eval_samples_per_second": 16.8,
1800
+ "eval_steps_per_second": 1.053,
1801
+ "step": 224
1802
+ },
1803
+ {
1804
+ "epoch": 2.25,
1805
+ "learning_rate": 2e-05,
1806
+ "loss": 4169.3755,
1807
+ "step": 225
1808
+ },
1809
+ {
1810
+ "epoch": 2.26,
1811
+ "learning_rate": 2e-05,
1812
+ "loss": 4260.3926,
1813
+ "step": 226
1814
+ },
1815
+ {
1816
+ "epoch": 2.27,
1817
+ "learning_rate": 2e-05,
1818
+ "loss": 4086.002,
1819
+ "step": 227
1820
+ },
1821
+ {
1822
+ "epoch": 2.28,
1823
+ "learning_rate": 2e-05,
1824
+ "loss": 4149.6416,
1825
+ "step": 228
1826
+ },
1827
+ {
1828
+ "epoch": 2.28,
1829
+ "eval_loss": 3951.014404296875,
1830
+ "eval_runtime": 95.1617,
1831
+ "eval_samples_per_second": 16.771,
1832
+ "eval_steps_per_second": 1.051,
1833
+ "step": 228
1834
+ },
1835
+ {
1836
+ "epoch": 2.29,
1837
+ "learning_rate": 2e-05,
1838
+ "loss": 3471.564,
1839
+ "step": 229
1840
+ },
1841
+ {
1842
+ "epoch": 2.3,
1843
+ "learning_rate": 2e-05,
1844
+ "loss": 3824.6528,
1845
+ "step": 230
1846
+ },
1847
+ {
1848
+ "epoch": 2.31,
1849
+ "learning_rate": 2e-05,
1850
+ "loss": 3360.2578,
1851
+ "step": 231
1852
+ },
1853
+ {
1854
+ "epoch": 2.32,
1855
+ "learning_rate": 2e-05,
1856
+ "loss": 3621.5127,
1857
+ "step": 232
1858
+ },
1859
+ {
1860
+ "epoch": 2.32,
1861
+ "eval_loss": 3957.65380859375,
1862
+ "eval_runtime": 95.1799,
1863
+ "eval_samples_per_second": 16.768,
1864
+ "eval_steps_per_second": 1.051,
1865
+ "step": 232
1866
+ },
1867
+ {
1868
+ "epoch": 2.33,
1869
+ "learning_rate": 2e-05,
1870
+ "loss": 4050.9973,
1871
+ "step": 233
1872
+ },
1873
+ {
1874
+ "epoch": 2.34,
1875
+ "learning_rate": 2e-05,
1876
+ "loss": 4221.9043,
1877
+ "step": 234
1878
+ },
1879
+ {
1880
+ "epoch": 2.35,
1881
+ "learning_rate": 2e-05,
1882
+ "loss": 3668.5938,
1883
+ "step": 235
1884
+ },
1885
+ {
1886
+ "epoch": 2.36,
1887
+ "learning_rate": 2e-05,
1888
+ "loss": 3374.7612,
1889
+ "step": 236
1890
+ },
1891
+ {
1892
+ "epoch": 2.36,
1893
+ "eval_loss": 3935.7607421875,
1894
+ "eval_runtime": 95.1897,
1895
+ "eval_samples_per_second": 16.767,
1896
+ "eval_steps_per_second": 1.051,
1897
+ "step": 236
1898
+ },
1899
+ {
1900
+ "epoch": 2.37,
1901
+ "learning_rate": 2e-05,
1902
+ "loss": 3811.7754,
1903
+ "step": 237
1904
+ },
1905
+ {
1906
+ "epoch": 2.38,
1907
+ "learning_rate": 2e-05,
1908
+ "loss": 3923.9185,
1909
+ "step": 238
1910
+ },
1911
+ {
1912
+ "epoch": 2.39,
1913
+ "learning_rate": 2e-05,
1914
+ "loss": 3072.0181,
1915
+ "step": 239
1916
+ },
1917
+ {
1918
+ "epoch": 2.4,
1919
+ "learning_rate": 2e-05,
1920
+ "loss": 4219.8125,
1921
+ "step": 240
1922
+ },
1923
+ {
1924
+ "epoch": 2.4,
1925
+ "eval_loss": 3909.99560546875,
1926
+ "eval_runtime": 95.2009,
1927
+ "eval_samples_per_second": 16.765,
1928
+ "eval_steps_per_second": 1.05,
1929
+ "step": 240
1930
+ },
1931
+ {
1932
+ "epoch": 2.41,
1933
+ "learning_rate": 2e-05,
1934
+ "loss": 4093.2798,
1935
+ "step": 241
1936
+ },
1937
+ {
1938
+ "epoch": 2.42,
1939
+ "learning_rate": 2e-05,
1940
+ "loss": 4144.9243,
1941
+ "step": 242
1942
+ },
1943
+ {
1944
+ "epoch": 2.43,
1945
+ "learning_rate": 2e-05,
1946
+ "loss": 3701.4731,
1947
+ "step": 243
1948
+ },
1949
+ {
1950
+ "epoch": 2.44,
1951
+ "learning_rate": 2e-05,
1952
+ "loss": 3713.2314,
1953
+ "step": 244
1954
+ },
1955
+ {
1956
+ "epoch": 2.44,
1957
+ "eval_loss": 3911.078857421875,
1958
+ "eval_runtime": 95.0383,
1959
+ "eval_samples_per_second": 16.793,
1960
+ "eval_steps_per_second": 1.052,
1961
+ "step": 244
1962
+ },
1963
+ {
1964
+ "epoch": 2.45,
1965
+ "learning_rate": 2e-05,
1966
+ "loss": 3543.9497,
1967
+ "step": 245
1968
+ },
1969
+ {
1970
+ "epoch": 2.46,
1971
+ "learning_rate": 2e-05,
1972
+ "loss": 3692.1785,
1973
+ "step": 246
1974
+ },
1975
+ {
1976
+ "epoch": 2.47,
1977
+ "learning_rate": 2e-05,
1978
+ "loss": 4061.7036,
1979
+ "step": 247
1980
+ },
1981
+ {
1982
+ "epoch": 2.48,
1983
+ "learning_rate": 2e-05,
1984
+ "loss": 3513.0017,
1985
+ "step": 248
1986
+ },
1987
+ {
1988
+ "epoch": 2.48,
1989
+ "eval_loss": 3910.442626953125,
1990
+ "eval_runtime": 95.2387,
1991
+ "eval_samples_per_second": 16.758,
1992
+ "eval_steps_per_second": 1.05,
1993
+ "step": 248
1994
+ },
1995
+ {
1996
+ "epoch": 2.49,
1997
+ "learning_rate": 2e-05,
1998
+ "loss": 4166.7217,
1999
+ "step": 249
2000
+ },
2001
+ {
2002
+ "epoch": 2.5,
2003
+ "learning_rate": 2e-05,
2004
+ "loss": 3680.3262,
2005
+ "step": 250
2006
+ },
2007
+ {
2008
+ "epoch": 2.51,
2009
+ "learning_rate": 2e-05,
2010
+ "loss": 3960.1064,
2011
+ "step": 251
2012
+ },
2013
+ {
2014
+ "epoch": 2.52,
2015
+ "learning_rate": 2e-05,
2016
+ "loss": 3358.9592,
2017
+ "step": 252
2018
+ },
2019
+ {
2020
+ "epoch": 2.52,
2021
+ "eval_loss": 3899.7275390625,
2022
+ "eval_runtime": 95.1727,
2023
+ "eval_samples_per_second": 16.77,
2024
+ "eval_steps_per_second": 1.051,
2025
+ "step": 252
2026
+ },
2027
+ {
2028
+ "epoch": 2.53,
2029
+ "learning_rate": 2e-05,
2030
+ "loss": 3664.8364,
2031
+ "step": 253
2032
+ },
2033
+ {
2034
+ "epoch": 2.54,
2035
+ "learning_rate": 2e-05,
2036
+ "loss": 3645.0352,
2037
+ "step": 254
2038
+ },
2039
+ {
2040
+ "epoch": 2.55,
2041
+ "learning_rate": 2e-05,
2042
+ "loss": 4320.4873,
2043
+ "step": 255
2044
+ },
2045
+ {
2046
+ "epoch": 2.56,
2047
+ "learning_rate": 2e-05,
2048
+ "loss": 4029.3306,
2049
+ "step": 256
2050
+ },
2051
+ {
2052
+ "epoch": 2.56,
2053
+ "eval_loss": 3905.114013671875,
2054
+ "eval_runtime": 95.1752,
2055
+ "eval_samples_per_second": 16.769,
2056
+ "eval_steps_per_second": 1.051,
2057
+ "step": 256
2058
+ },
2059
+ {
2060
+ "epoch": 2.57,
2061
+ "learning_rate": 2e-05,
2062
+ "loss": 4058.9121,
2063
+ "step": 257
2064
+ },
2065
+ {
2066
+ "epoch": 2.58,
2067
+ "learning_rate": 2e-05,
2068
+ "loss": 4163.0127,
2069
+ "step": 258
2070
+ },
2071
+ {
2072
+ "epoch": 2.59,
2073
+ "learning_rate": 2e-05,
2074
+ "loss": 3698.998,
2075
+ "step": 259
2076
+ },
2077
+ {
2078
+ "epoch": 2.6,
2079
+ "learning_rate": 2e-05,
2080
+ "loss": 3724.9954,
2081
+ "step": 260
2082
+ },
2083
+ {
2084
+ "epoch": 2.6,
2085
+ "eval_loss": 3902.5595703125,
2086
+ "eval_runtime": 95.1954,
2087
+ "eval_samples_per_second": 16.766,
2088
+ "eval_steps_per_second": 1.05,
2089
+ "step": 260
2090
+ },
2091
+ {
2092
+ "epoch": 2.61,
2093
+ "learning_rate": 2e-05,
2094
+ "loss": 4149.5771,
2095
+ "step": 261
2096
+ },
2097
+ {
2098
+ "epoch": 2.62,
2099
+ "learning_rate": 2e-05,
2100
+ "loss": 3952.4429,
2101
+ "step": 262
2102
+ },
2103
+ {
2104
+ "epoch": 2.63,
2105
+ "learning_rate": 2e-05,
2106
+ "loss": 3482.0449,
2107
+ "step": 263
2108
+ },
2109
+ {
2110
+ "epoch": 2.64,
2111
+ "learning_rate": 2e-05,
2112
+ "loss": 3825.3076,
2113
+ "step": 264
2114
+ },
2115
+ {
2116
+ "epoch": 2.64,
2117
+ "eval_loss": 3882.601806640625,
2118
+ "eval_runtime": 95.0573,
2119
+ "eval_samples_per_second": 16.79,
2120
+ "eval_steps_per_second": 1.052,
2121
+ "step": 264
2122
+ },
2123
+ {
2124
+ "epoch": 2.65,
2125
+ "learning_rate": 2e-05,
2126
+ "loss": 3698.0227,
2127
+ "step": 265
2128
+ },
2129
+ {
2130
+ "epoch": 2.66,
2131
+ "learning_rate": 2e-05,
2132
+ "loss": 3797.3899,
2133
+ "step": 266
2134
+ },
2135
+ {
2136
+ "epoch": 2.67,
2137
+ "learning_rate": 2e-05,
2138
+ "loss": 3853.0374,
2139
+ "step": 267
2140
+ },
2141
+ {
2142
+ "epoch": 2.68,
2143
+ "learning_rate": 2e-05,
2144
+ "loss": 3591.9854,
2145
+ "step": 268
2146
+ },
2147
+ {
2148
+ "epoch": 2.68,
2149
+ "eval_loss": 3878.234375,
2150
+ "eval_runtime": 95.1839,
2151
+ "eval_samples_per_second": 16.768,
2152
+ "eval_steps_per_second": 1.051,
2153
+ "step": 268
2154
+ },
2155
+ {
2156
+ "epoch": 2.69,
2157
+ "learning_rate": 2e-05,
2158
+ "loss": 3889.3989,
2159
+ "step": 269
2160
+ },
2161
+ {
2162
+ "epoch": 2.7,
2163
+ "learning_rate": 2e-05,
2164
+ "loss": 3946.7024,
2165
+ "step": 270
2166
+ },
2167
+ {
2168
+ "epoch": 2.71,
2169
+ "learning_rate": 2e-05,
2170
+ "loss": 4180.001,
2171
+ "step": 271
2172
+ },
2173
+ {
2174
+ "epoch": 2.72,
2175
+ "learning_rate": 2e-05,
2176
+ "loss": 3440.269,
2177
+ "step": 272
2178
+ },
2179
+ {
2180
+ "epoch": 2.72,
2181
+ "eval_loss": 3873.271728515625,
2182
+ "eval_runtime": 95.2614,
2183
+ "eval_samples_per_second": 16.754,
2184
+ "eval_steps_per_second": 1.05,
2185
+ "step": 272
2186
+ },
2187
+ {
2188
+ "epoch": 2.73,
2189
+ "learning_rate": 2e-05,
2190
+ "loss": 3619.1611,
2191
+ "step": 273
2192
+ },
2193
+ {
2194
+ "epoch": 2.74,
2195
+ "learning_rate": 2e-05,
2196
+ "loss": 3825.2026,
2197
+ "step": 274
2198
+ },
2199
+ {
2200
+ "epoch": 2.75,
2201
+ "learning_rate": 2e-05,
2202
+ "loss": 4002.6731,
2203
+ "step": 275
2204
+ },
2205
+ {
2206
+ "epoch": 2.76,
2207
+ "learning_rate": 2e-05,
2208
+ "loss": 3595.2097,
2209
+ "step": 276
2210
+ },
2211
+ {
2212
+ "epoch": 2.76,
2213
+ "eval_loss": 3864.229248046875,
2214
+ "eval_runtime": 95.4953,
2215
+ "eval_samples_per_second": 16.713,
2216
+ "eval_steps_per_second": 1.047,
2217
+ "step": 276
2218
+ },
2219
+ {
2220
+ "epoch": 2.77,
2221
+ "learning_rate": 2e-05,
2222
+ "loss": 3813.6006,
2223
+ "step": 277
2224
+ },
2225
+ {
2226
+ "epoch": 2.78,
2227
+ "learning_rate": 2e-05,
2228
+ "loss": 4163.6484,
2229
+ "step": 278
2230
+ },
2231
+ {
2232
+ "epoch": 2.79,
2233
+ "learning_rate": 2e-05,
2234
+ "loss": 3158.1484,
2235
+ "step": 279
2236
+ },
2237
+ {
2238
+ "epoch": 2.8,
2239
+ "learning_rate": 2e-05,
2240
+ "loss": 3456.5925,
2241
+ "step": 280
2242
+ },
2243
+ {
2244
+ "epoch": 2.8,
2245
+ "eval_loss": 3866.61767578125,
2246
+ "eval_runtime": 95.7468,
2247
+ "eval_samples_per_second": 16.669,
2248
+ "eval_steps_per_second": 1.044,
2249
+ "step": 280
2250
+ },
2251
+ {
2252
+ "epoch": 2.81,
2253
+ "learning_rate": 2e-05,
2254
+ "loss": 3924.3809,
2255
+ "step": 281
2256
+ },
2257
+ {
2258
+ "epoch": 2.82,
2259
+ "learning_rate": 2e-05,
2260
+ "loss": 4106.1128,
2261
+ "step": 282
2262
+ },
2263
+ {
2264
+ "epoch": 2.83,
2265
+ "learning_rate": 2e-05,
2266
+ "loss": 3968.1797,
2267
+ "step": 283
2268
+ },
2269
+ {
2270
+ "epoch": 2.84,
2271
+ "learning_rate": 2e-05,
2272
+ "loss": 3913.6394,
2273
+ "step": 284
2274
+ },
2275
+ {
2276
+ "epoch": 2.84,
2277
+ "eval_loss": 3853.93505859375,
2278
+ "eval_runtime": 95.3329,
2279
+ "eval_samples_per_second": 16.741,
2280
+ "eval_steps_per_second": 1.049,
2281
+ "step": 284
2282
+ },
2283
+ {
2284
+ "epoch": 2.85,
2285
+ "learning_rate": 2e-05,
2286
+ "loss": 3787.5688,
2287
+ "step": 285
2288
+ },
2289
+ {
2290
+ "epoch": 2.86,
2291
+ "learning_rate": 2e-05,
2292
+ "loss": 4051.9841,
2293
+ "step": 286
2294
+ },
2295
+ {
2296
+ "epoch": 2.87,
2297
+ "learning_rate": 2e-05,
2298
+ "loss": 3468.6104,
2299
+ "step": 287
2300
+ },
2301
+ {
2302
+ "epoch": 2.88,
2303
+ "learning_rate": 2e-05,
2304
+ "loss": 4153.1147,
2305
+ "step": 288
2306
+ },
2307
+ {
2308
+ "epoch": 2.88,
2309
+ "eval_loss": 3836.56201171875,
2310
+ "eval_runtime": 95.4516,
2311
+ "eval_samples_per_second": 16.721,
2312
+ "eval_steps_per_second": 1.048,
2313
+ "step": 288
2314
+ },
2315
+ {
2316
+ "epoch": 2.89,
2317
+ "learning_rate": 2e-05,
2318
+ "loss": 3588.4766,
2319
+ "step": 289
2320
+ },
2321
+ {
2322
+ "epoch": 2.9,
2323
+ "learning_rate": 2e-05,
2324
+ "loss": 3939.7871,
2325
+ "step": 290
2326
+ },
2327
+ {
2328
+ "epoch": 2.91,
2329
+ "learning_rate": 2e-05,
2330
+ "loss": 4142.5205,
2331
+ "step": 291
2332
+ },
2333
+ {
2334
+ "epoch": 2.92,
2335
+ "learning_rate": 2e-05,
2336
+ "loss": 3433.5652,
2337
+ "step": 292
2338
+ },
2339
+ {
2340
+ "epoch": 2.92,
2341
+ "eval_loss": 3846.0400390625,
2342
+ "eval_runtime": 95.5865,
2343
+ "eval_samples_per_second": 16.697,
2344
+ "eval_steps_per_second": 1.046,
2345
+ "step": 292
2346
+ },
2347
+ {
2348
+ "epoch": 2.93,
2349
+ "learning_rate": 2e-05,
2350
+ "loss": 3704.4355,
2351
+ "step": 293
2352
+ },
2353
+ {
2354
+ "epoch": 2.94,
2355
+ "learning_rate": 2e-05,
2356
+ "loss": 3561.1382,
2357
+ "step": 294
2358
+ },
2359
+ {
2360
+ "epoch": 2.95,
2361
+ "learning_rate": 2e-05,
2362
+ "loss": 4084.75,
2363
+ "step": 295
2364
+ },
2365
+ {
2366
+ "epoch": 2.96,
2367
+ "learning_rate": 2e-05,
2368
+ "loss": 3592.4402,
2369
+ "step": 296
2370
+ },
2371
+ {
2372
+ "epoch": 2.96,
2373
+ "eval_loss": 3824.31298828125,
2374
+ "eval_runtime": 95.6271,
2375
+ "eval_samples_per_second": 16.69,
2376
+ "eval_steps_per_second": 1.046,
2377
+ "step": 296
2378
+ },
2379
+ {
2380
+ "epoch": 2.97,
2381
+ "learning_rate": 2e-05,
2382
+ "loss": 3653.906,
2383
+ "step": 297
2384
+ },
2385
+ {
2386
+ "epoch": 2.98,
2387
+ "learning_rate": 2e-05,
2388
+ "loss": 3920.9485,
2389
+ "step": 298
2390
+ },
2391
+ {
2392
+ "epoch": 2.99,
2393
+ "learning_rate": 2e-05,
2394
+ "loss": 4010.104,
2395
+ "step": 299
2396
+ },
2397
+ {
2398
+ "epoch": 3.0,
2399
+ "learning_rate": 2e-05,
2400
+ "loss": 4472.293,
2401
+ "step": 300
2402
+ },
2403
+ {
2404
+ "epoch": 3.0,
2405
+ "eval_loss": 3811.89013671875,
2406
+ "eval_runtime": 95.218,
2407
+ "eval_samples_per_second": 16.762,
2408
+ "eval_steps_per_second": 1.05,
2409
+ "step": 300
2410
+ },
2411
+ {
2412
+ "epoch": 3.01,
2413
+ "learning_rate": 2e-05,
2414
+ "loss": 4144.3301,
2415
+ "step": 301
2416
+ },
2417
+ {
2418
+ "epoch": 3.02,
2419
+ "learning_rate": 2e-05,
2420
+ "loss": 3661.8413,
2421
+ "step": 302
2422
+ },
2423
+ {
2424
+ "epoch": 3.03,
2425
+ "learning_rate": 2e-05,
2426
+ "loss": 4158.1958,
2427
+ "step": 303
2428
+ },
2429
+ {
2430
+ "epoch": 3.04,
2431
+ "learning_rate": 2e-05,
2432
+ "loss": 3705.3564,
2433
+ "step": 304
2434
+ },
2435
+ {
2436
+ "epoch": 3.04,
2437
+ "eval_loss": 3801.527587890625,
2438
+ "eval_runtime": 95.4031,
2439
+ "eval_samples_per_second": 16.729,
2440
+ "eval_steps_per_second": 1.048,
2441
+ "step": 304
2442
+ },
2443
+ {
2444
+ "epoch": 3.05,
2445
+ "learning_rate": 2e-05,
2446
+ "loss": 3678.627,
2447
+ "step": 305
2448
+ },
2449
+ {
2450
+ "epoch": 3.06,
2451
+ "learning_rate": 2e-05,
2452
+ "loss": 3692.2642,
2453
+ "step": 306
2454
+ },
2455
+ {
2456
+ "epoch": 3.07,
2457
+ "learning_rate": 2e-05,
2458
+ "loss": 4010.1907,
2459
+ "step": 307
2460
+ },
2461
+ {
2462
+ "epoch": 3.08,
2463
+ "learning_rate": 2e-05,
2464
+ "loss": 3680.8633,
2465
+ "step": 308
2466
+ },
2467
+ {
2468
+ "epoch": 3.08,
2469
+ "eval_loss": 3794.080322265625,
2470
+ "eval_runtime": 95.2615,
2471
+ "eval_samples_per_second": 16.754,
2472
+ "eval_steps_per_second": 1.05,
2473
+ "step": 308
2474
+ },
2475
+ {
2476
+ "epoch": 3.09,
2477
+ "learning_rate": 2e-05,
2478
+ "loss": 4088.3789,
2479
+ "step": 309
2480
+ },
2481
+ {
2482
+ "epoch": 3.1,
2483
+ "learning_rate": 2e-05,
2484
+ "loss": 3263.083,
2485
+ "step": 310
2486
+ },
2487
+ {
2488
+ "epoch": 3.11,
2489
+ "learning_rate": 2e-05,
2490
+ "loss": 3412.7646,
2491
+ "step": 311
2492
+ },
2493
+ {
2494
+ "epoch": 3.12,
2495
+ "learning_rate": 2e-05,
2496
+ "loss": 2886.2148,
2497
+ "step": 312
2498
+ },
2499
+ {
2500
+ "epoch": 3.12,
2501
+ "eval_loss": 3781.141357421875,
2502
+ "eval_runtime": 95.4625,
2503
+ "eval_samples_per_second": 16.719,
2504
+ "eval_steps_per_second": 1.048,
2505
+ "step": 312
2506
+ },
2507
+ {
2508
+ "epoch": 3.13,
2509
+ "learning_rate": 2e-05,
2510
+ "loss": 3421.999,
2511
+ "step": 313
2512
+ },
2513
+ {
2514
+ "epoch": 3.14,
2515
+ "learning_rate": 2e-05,
2516
+ "loss": 4785.0142,
2517
+ "step": 314
2518
+ },
2519
+ {
2520
+ "epoch": 3.15,
2521
+ "learning_rate": 2e-05,
2522
+ "loss": 3859.052,
2523
+ "step": 315
2524
+ },
2525
+ {
2526
+ "epoch": 3.16,
2527
+ "learning_rate": 2e-05,
2528
+ "loss": 3919.5405,
2529
+ "step": 316
2530
+ },
2531
+ {
2532
+ "epoch": 3.16,
2533
+ "eval_loss": 3814.05224609375,
2534
+ "eval_runtime": 95.377,
2535
+ "eval_samples_per_second": 16.734,
2536
+ "eval_steps_per_second": 1.048,
2537
+ "step": 316
2538
+ },
2539
+ {
2540
+ "epoch": 3.17,
2541
+ "learning_rate": 2e-05,
2542
+ "loss": 3466.0466,
2543
+ "step": 317
2544
+ },
2545
+ {
2546
+ "epoch": 3.18,
2547
+ "learning_rate": 2e-05,
2548
+ "loss": 3382.6812,
2549
+ "step": 318
2550
+ },
2551
+ {
2552
+ "epoch": 3.19,
2553
+ "learning_rate": 2e-05,
2554
+ "loss": 3554.6763,
2555
+ "step": 319
2556
+ },
2557
+ {
2558
+ "epoch": 3.2,
2559
+ "learning_rate": 2e-05,
2560
+ "loss": 3869.5581,
2561
+ "step": 320
2562
+ },
2563
+ {
2564
+ "epoch": 3.2,
2565
+ "eval_loss": 3784.0302734375,
2566
+ "eval_runtime": 95.3698,
2567
+ "eval_samples_per_second": 16.735,
2568
+ "eval_steps_per_second": 1.049,
2569
+ "step": 320
2570
+ },
2571
+ {
2572
+ "epoch": 3.21,
2573
+ "learning_rate": 2e-05,
2574
+ "loss": 3639.7705,
2575
+ "step": 321
2576
+ },
2577
+ {
2578
+ "epoch": 3.22,
2579
+ "learning_rate": 2e-05,
2580
+ "loss": 3887.6313,
2581
+ "step": 322
2582
+ },
2583
+ {
2584
+ "epoch": 3.23,
2585
+ "learning_rate": 2e-05,
2586
+ "loss": 3908.9287,
2587
+ "step": 323
2588
+ },
2589
+ {
2590
+ "epoch": 3.24,
2591
+ "learning_rate": 2e-05,
2592
+ "loss": 3672.9302,
2593
+ "step": 324
2594
+ },
2595
+ {
2596
+ "epoch": 3.24,
2597
+ "eval_loss": 3771.347412109375,
2598
+ "eval_runtime": 95.2036,
2599
+ "eval_samples_per_second": 16.764,
2600
+ "eval_steps_per_second": 1.05,
2601
+ "step": 324
2602
+ },
2603
+ {
2604
+ "epoch": 3.25,
2605
+ "learning_rate": 2e-05,
2606
+ "loss": 3436.8274,
2607
+ "step": 325
2608
+ },
2609
+ {
2610
+ "epoch": 3.26,
2611
+ "learning_rate": 2e-05,
2612
+ "loss": 3314.8804,
2613
+ "step": 326
2614
+ },
2615
+ {
2616
+ "epoch": 3.27,
2617
+ "learning_rate": 2e-05,
2618
+ "loss": 4389.9253,
2619
+ "step": 327
2620
+ },
2621
+ {
2622
+ "epoch": 3.28,
2623
+ "learning_rate": 2e-05,
2624
+ "loss": 4018.4453,
2625
+ "step": 328
2626
+ },
2627
+ {
2628
+ "epoch": 3.28,
2629
+ "eval_loss": 3771.130859375,
2630
+ "eval_runtime": 95.3816,
2631
+ "eval_samples_per_second": 16.733,
2632
+ "eval_steps_per_second": 1.048,
2633
+ "step": 328
2634
+ },
2635
+ {
2636
+ "epoch": 3.29,
2637
+ "learning_rate": 2e-05,
2638
+ "loss": 3510.4697,
2639
+ "step": 329
2640
+ },
2641
+ {
2642
+ "epoch": 3.3,
2643
+ "learning_rate": 2e-05,
2644
+ "loss": 3604.1636,
2645
+ "step": 330
2646
+ },
2647
+ {
2648
+ "epoch": 3.31,
2649
+ "learning_rate": 2e-05,
2650
+ "loss": 4791.7847,
2651
+ "step": 331
2652
+ },
2653
+ {
2654
+ "epoch": 3.32,
2655
+ "learning_rate": 2e-05,
2656
+ "loss": 3840.9712,
2657
+ "step": 332
2658
+ },
2659
+ {
2660
+ "epoch": 3.32,
2661
+ "eval_loss": 3769.62744140625,
2662
+ "eval_runtime": 95.364,
2663
+ "eval_samples_per_second": 16.736,
2664
+ "eval_steps_per_second": 1.049,
2665
+ "step": 332
2666
+ },
2667
+ {
2668
+ "epoch": 3.33,
2669
+ "learning_rate": 2e-05,
2670
+ "loss": 3833.2412,
2671
+ "step": 333
2672
+ },
2673
+ {
2674
+ "epoch": 3.34,
2675
+ "learning_rate": 2e-05,
2676
+ "loss": 3851.5979,
2677
+ "step": 334
2678
+ },
2679
+ {
2680
+ "epoch": 3.35,
2681
+ "learning_rate": 2e-05,
2682
+ "loss": 3107.7024,
2683
+ "step": 335
2684
+ },
2685
+ {
2686
+ "epoch": 3.36,
2687
+ "learning_rate": 2e-05,
2688
+ "loss": 3598.7141,
2689
+ "step": 336
2690
+ },
2691
+ {
2692
+ "epoch": 3.36,
2693
+ "eval_loss": 3741.15283203125,
2694
+ "eval_runtime": 95.3181,
2695
+ "eval_samples_per_second": 16.744,
2696
+ "eval_steps_per_second": 1.049,
2697
+ "step": 336
2698
+ },
2699
+ {
2700
+ "epoch": 3.37,
2701
+ "learning_rate": 2e-05,
2702
+ "loss": 3801.637,
2703
+ "step": 337
2704
+ },
2705
+ {
2706
+ "epoch": 3.38,
2707
+ "learning_rate": 2e-05,
2708
+ "loss": 3975.8054,
2709
+ "step": 338
2710
+ },
2711
+ {
2712
+ "epoch": 3.39,
2713
+ "learning_rate": 2e-05,
2714
+ "loss": 3865.6533,
2715
+ "step": 339
2716
+ },
2717
+ {
2718
+ "epoch": 3.4,
2719
+ "learning_rate": 2e-05,
2720
+ "loss": 4142.3828,
2721
+ "step": 340
2722
+ },
2723
+ {
2724
+ "epoch": 3.4,
2725
+ "eval_loss": 3735.14892578125,
2726
+ "eval_runtime": 95.3278,
2727
+ "eval_samples_per_second": 16.742,
2728
+ "eval_steps_per_second": 1.049,
2729
+ "step": 340
2730
+ },
2731
+ {
2732
+ "epoch": 3.41,
2733
+ "learning_rate": 2e-05,
2734
+ "loss": 3423.9048,
2735
+ "step": 341
2736
+ },
2737
+ {
2738
+ "epoch": 3.42,
2739
+ "learning_rate": 2e-05,
2740
+ "loss": 3500.3408,
2741
+ "step": 342
2742
+ },
2743
+ {
2744
+ "epoch": 3.43,
2745
+ "learning_rate": 2e-05,
2746
+ "loss": 3935.4355,
2747
+ "step": 343
2748
+ },
2749
+ {
2750
+ "epoch": 3.44,
2751
+ "learning_rate": 2e-05,
2752
+ "loss": 3490.2856,
2753
+ "step": 344
2754
+ },
2755
+ {
2756
+ "epoch": 3.44,
2757
+ "eval_loss": 3755.257568359375,
2758
+ "eval_runtime": 95.3238,
2759
+ "eval_samples_per_second": 16.743,
2760
+ "eval_steps_per_second": 1.049,
2761
+ "step": 344
2762
+ },
2763
+ {
2764
+ "epoch": 3.45,
2765
+ "learning_rate": 2e-05,
2766
+ "loss": 3251.2615,
2767
+ "step": 345
2768
+ },
2769
+ {
2770
+ "epoch": 3.46,
2771
+ "learning_rate": 2e-05,
2772
+ "loss": 3406.0591,
2773
+ "step": 346
2774
+ },
2775
+ {
2776
+ "epoch": 3.47,
2777
+ "learning_rate": 2e-05,
2778
+ "loss": 3306.6914,
2779
+ "step": 347
2780
+ },
2781
+ {
2782
+ "epoch": 3.48,
2783
+ "learning_rate": 2e-05,
2784
+ "loss": 3858.6367,
2785
+ "step": 348
2786
+ },
2787
+ {
2788
+ "epoch": 3.48,
2789
+ "eval_loss": 3728.05615234375,
2790
+ "eval_runtime": 95.4779,
2791
+ "eval_samples_per_second": 16.716,
2792
+ "eval_steps_per_second": 1.047,
2793
+ "step": 348
2794
+ },
2795
+ {
2796
+ "epoch": 3.49,
2797
+ "learning_rate": 2e-05,
2798
+ "loss": 2887.1479,
2799
+ "step": 349
2800
+ },
2801
+ {
2802
+ "epoch": 3.5,
2803
+ "learning_rate": 2e-05,
2804
+ "loss": 3831.7244,
2805
+ "step": 350
2806
+ },
2807
+ {
2808
+ "epoch": 3.51,
2809
+ "learning_rate": 2e-05,
2810
+ "loss": 3361.1741,
2811
+ "step": 351
2812
+ },
2813
+ {
2814
+ "epoch": 3.52,
2815
+ "learning_rate": 2e-05,
2816
+ "loss": 3100.0488,
2817
+ "step": 352
2818
+ },
2819
+ {
2820
+ "epoch": 3.52,
2821
+ "eval_loss": 3719.01953125,
2822
+ "eval_runtime": 95.2657,
2823
+ "eval_samples_per_second": 16.753,
2824
+ "eval_steps_per_second": 1.05,
2825
+ "step": 352
2826
+ },
2827
+ {
2828
+ "epoch": 3.53,
2829
+ "learning_rate": 2e-05,
2830
+ "loss": 3521.7913,
2831
+ "step": 353
2832
+ },
2833
+ {
2834
+ "epoch": 3.54,
2835
+ "learning_rate": 2e-05,
2836
+ "loss": 3286.1931,
2837
+ "step": 354
2838
+ },
2839
+ {
2840
+ "epoch": 3.55,
2841
+ "learning_rate": 2e-05,
2842
+ "loss": 4122.73,
2843
+ "step": 355
2844
+ },
2845
+ {
2846
+ "epoch": 3.56,
2847
+ "learning_rate": 2e-05,
2848
+ "loss": 3818.4766,
2849
+ "step": 356
2850
+ },
2851
+ {
2852
+ "epoch": 3.56,
2853
+ "eval_loss": 3691.170166015625,
2854
+ "eval_runtime": 95.4436,
2855
+ "eval_samples_per_second": 16.722,
2856
+ "eval_steps_per_second": 1.048,
2857
+ "step": 356
2858
+ },
2859
+ {
2860
+ "epoch": 3.57,
2861
+ "learning_rate": 2e-05,
2862
+ "loss": 3285.2466,
2863
+ "step": 357
2864
+ },
2865
+ {
2866
+ "epoch": 3.58,
2867
+ "learning_rate": 2e-05,
2868
+ "loss": 3424.1902,
2869
+ "step": 358
2870
+ },
2871
+ {
2872
+ "epoch": 3.59,
2873
+ "learning_rate": 2e-05,
2874
+ "loss": 3263.9805,
2875
+ "step": 359
2876
+ },
2877
+ {
2878
+ "epoch": 3.6,
2879
+ "learning_rate": 2e-05,
2880
+ "loss": 3721.5125,
2881
+ "step": 360
2882
+ },
2883
+ {
2884
+ "epoch": 3.6,
2885
+ "eval_loss": 3691.932861328125,
2886
+ "eval_runtime": 95.5042,
2887
+ "eval_samples_per_second": 16.711,
2888
+ "eval_steps_per_second": 1.047,
2889
+ "step": 360
2890
+ },
2891
+ {
2892
+ "epoch": 3.61,
2893
+ "learning_rate": 2e-05,
2894
+ "loss": 3110.5813,
2895
+ "step": 361
2896
+ },
2897
+ {
2898
+ "epoch": 3.62,
2899
+ "learning_rate": 2e-05,
2900
+ "loss": 3151.187,
2901
+ "step": 362
2902
+ },
2903
+ {
2904
+ "epoch": 3.63,
2905
+ "learning_rate": 2e-05,
2906
+ "loss": 3511.4319,
2907
+ "step": 363
2908
+ },
2909
+ {
2910
+ "epoch": 3.64,
2911
+ "learning_rate": 2e-05,
2912
+ "loss": 3510.0305,
2913
+ "step": 364
2914
+ },
2915
+ {
2916
+ "epoch": 3.64,
2917
+ "eval_loss": 3845.365234375,
2918
+ "eval_runtime": 95.2618,
2919
+ "eval_samples_per_second": 16.754,
2920
+ "eval_steps_per_second": 1.05,
2921
+ "step": 364
2922
+ },
2923
+ {
2924
+ "epoch": 3.65,
2925
+ "learning_rate": 2e-05,
2926
+ "loss": 3422.686,
2927
+ "step": 365
2928
+ },
2929
+ {
2930
+ "epoch": 3.66,
2931
+ "learning_rate": 2e-05,
2932
+ "loss": 4240.2275,
2933
+ "step": 366
2934
+ },
2935
+ {
2936
+ "epoch": 3.67,
2937
+ "learning_rate": 2e-05,
2938
+ "loss": 3544.7195,
2939
+ "step": 367
2940
+ },
2941
+ {
2942
+ "epoch": 3.68,
2943
+ "learning_rate": 2e-05,
2944
+ "loss": 3897.0737,
2945
+ "step": 368
2946
+ },
2947
+ {
2948
+ "epoch": 3.68,
2949
+ "eval_loss": 3735.1435546875,
2950
+ "eval_runtime": 95.385,
2951
+ "eval_samples_per_second": 16.732,
2952
+ "eval_steps_per_second": 1.048,
2953
+ "step": 368
2954
+ },
2955
+ {
2956
+ "epoch": 3.69,
2957
+ "learning_rate": 2e-05,
2958
+ "loss": 3670.8647,
2959
+ "step": 369
2960
+ },
2961
+ {
2962
+ "epoch": 3.7,
2963
+ "learning_rate": 2e-05,
2964
+ "loss": 3732.1475,
2965
+ "step": 370
2966
+ },
2967
+ {
2968
+ "epoch": 3.71,
2969
+ "learning_rate": 2e-05,
2970
+ "loss": 3360.2307,
2971
+ "step": 371
2972
+ },
2973
+ {
2974
+ "epoch": 3.72,
2975
+ "learning_rate": 2e-05,
2976
+ "loss": 3394.595,
2977
+ "step": 372
2978
+ },
2979
+ {
2980
+ "epoch": 3.72,
2981
+ "eval_loss": 3689.341552734375,
2982
+ "eval_runtime": 95.4346,
2983
+ "eval_samples_per_second": 16.724,
2984
+ "eval_steps_per_second": 1.048,
2985
+ "step": 372
2986
+ },
2987
+ {
2988
+ "epoch": 3.73,
2989
+ "learning_rate": 2e-05,
2990
+ "loss": 3888.7461,
2991
+ "step": 373
2992
+ },
2993
+ {
2994
+ "epoch": 3.74,
2995
+ "learning_rate": 2e-05,
2996
+ "loss": 3887.3716,
2997
+ "step": 374
2998
+ },
2999
+ {
3000
+ "epoch": 3.75,
3001
+ "learning_rate": 2e-05,
3002
+ "loss": 3540.4429,
3003
+ "step": 375
3004
+ },
3005
+ {
3006
+ "epoch": 3.76,
3007
+ "learning_rate": 2e-05,
3008
+ "loss": 3279.0503,
3009
+ "step": 376
3010
+ },
3011
+ {
3012
+ "epoch": 3.76,
3013
+ "eval_loss": 3688.84619140625,
3014
+ "eval_runtime": 95.5526,
3015
+ "eval_samples_per_second": 16.703,
3016
+ "eval_steps_per_second": 1.047,
3017
+ "step": 376
3018
+ },
3019
+ {
3020
+ "epoch": 3.77,
3021
+ "learning_rate": 2e-05,
3022
+ "loss": 3422.4468,
3023
+ "step": 377
3024
+ },
3025
+ {
3026
+ "epoch": 3.78,
3027
+ "learning_rate": 2e-05,
3028
+ "loss": 3986.1982,
3029
+ "step": 378
3030
+ },
3031
+ {
3032
+ "epoch": 3.79,
3033
+ "learning_rate": 2e-05,
3034
+ "loss": 3540.3237,
3035
+ "step": 379
3036
+ },
3037
+ {
3038
+ "epoch": 3.8,
3039
+ "learning_rate": 2e-05,
3040
+ "loss": 3527.5225,
3041
+ "step": 380
3042
+ },
3043
+ {
3044
+ "epoch": 3.8,
3045
+ "eval_loss": 3675.298828125,
3046
+ "eval_runtime": 95.6115,
3047
+ "eval_samples_per_second": 16.693,
3048
+ "eval_steps_per_second": 1.046,
3049
+ "step": 380
3050
+ },
3051
+ {
3052
+ "epoch": 3.81,
3053
+ "learning_rate": 2e-05,
3054
+ "loss": 3525.8005,
3055
+ "step": 381
3056
+ },
3057
+ {
3058
+ "epoch": 3.82,
3059
+ "learning_rate": 2e-05,
3060
+ "loss": 3136.1785,
3061
+ "step": 382
3062
+ },
3063
+ {
3064
+ "epoch": 3.83,
3065
+ "learning_rate": 2e-05,
3066
+ "loss": 3337.8206,
3067
+ "step": 383
3068
+ },
3069
+ {
3070
+ "epoch": 3.84,
3071
+ "learning_rate": 2e-05,
3072
+ "loss": 3592.8411,
3073
+ "step": 384
3074
+ },
3075
+ {
3076
+ "epoch": 3.84,
3077
+ "eval_loss": 3678.1904296875,
3078
+ "eval_runtime": 95.1358,
3079
+ "eval_samples_per_second": 16.776,
3080
+ "eval_steps_per_second": 1.051,
3081
+ "step": 384
3082
+ },
3083
+ {
3084
+ "epoch": 3.85,
3085
+ "learning_rate": 2e-05,
3086
+ "loss": 3581.0991,
3087
+ "step": 385
3088
+ },
3089
+ {
3090
+ "epoch": 3.86,
3091
+ "learning_rate": 2e-05,
3092
+ "loss": 4133.2891,
3093
+ "step": 386
3094
+ },
3095
+ {
3096
+ "epoch": 3.87,
3097
+ "learning_rate": 2e-05,
3098
+ "loss": 3552.9802,
3099
+ "step": 387
3100
+ },
3101
+ {
3102
+ "epoch": 3.88,
3103
+ "learning_rate": 2e-05,
3104
+ "loss": 3522.3882,
3105
+ "step": 388
3106
+ },
3107
+ {
3108
+ "epoch": 3.88,
3109
+ "eval_loss": 3674.487548828125,
3110
+ "eval_runtime": 95.2781,
3111
+ "eval_samples_per_second": 16.751,
3112
+ "eval_steps_per_second": 1.05,
3113
+ "step": 388
3114
+ },
3115
+ {
3116
+ "epoch": 3.89,
3117
+ "learning_rate": 2e-05,
3118
+ "loss": 3406.5796,
3119
+ "step": 389
3120
+ },
3121
+ {
3122
+ "epoch": 3.9,
3123
+ "learning_rate": 2e-05,
3124
+ "loss": 3628.0713,
3125
+ "step": 390
3126
+ },
3127
+ {
3128
+ "epoch": 3.91,
3129
+ "learning_rate": 2e-05,
3130
+ "loss": 3814.6108,
3131
+ "step": 391
3132
+ },
3133
+ {
3134
+ "epoch": 3.92,
3135
+ "learning_rate": 2e-05,
3136
+ "loss": 3952.0635,
3137
+ "step": 392
3138
+ },
3139
+ {
3140
+ "epoch": 3.92,
3141
+ "eval_loss": 3655.67919921875,
3142
+ "eval_runtime": 95.4463,
3143
+ "eval_samples_per_second": 16.721,
3144
+ "eval_steps_per_second": 1.048,
3145
+ "step": 392
3146
+ },
3147
+ {
3148
+ "epoch": 3.93,
3149
+ "learning_rate": 2e-05,
3150
+ "loss": 3041.1628,
3151
+ "step": 393
3152
+ },
3153
+ {
3154
+ "epoch": 3.94,
3155
+ "learning_rate": 2e-05,
3156
+ "loss": 3882.897,
3157
+ "step": 394
3158
+ },
3159
+ {
3160
+ "epoch": 3.95,
3161
+ "learning_rate": 2e-05,
3162
+ "loss": 3482.4553,
3163
+ "step": 395
3164
+ },
3165
+ {
3166
+ "epoch": 3.96,
3167
+ "learning_rate": 2e-05,
3168
+ "loss": 3240.0728,
3169
+ "step": 396
3170
+ },
3171
+ {
3172
+ "epoch": 3.96,
3173
+ "eval_loss": 3666.441650390625,
3174
+ "eval_runtime": 95.3661,
3175
+ "eval_samples_per_second": 16.736,
3176
+ "eval_steps_per_second": 1.049,
3177
+ "step": 396
3178
+ },
3179
+ {
3180
+ "epoch": 3.97,
3181
+ "learning_rate": 2e-05,
3182
+ "loss": 3923.905,
3183
+ "step": 397
3184
+ },
3185
+ {
3186
+ "epoch": 3.98,
3187
+ "learning_rate": 2e-05,
3188
+ "loss": 3575.6948,
3189
+ "step": 398
3190
+ },
3191
+ {
3192
+ "epoch": 3.99,
3193
+ "learning_rate": 2e-05,
3194
+ "loss": 2891.4922,
3195
+ "step": 399
3196
+ },
3197
+ {
3198
+ "epoch": 4.0,
3199
+ "learning_rate": 2e-05,
3200
+ "loss": 3905.6792,
3201
+ "step": 400
3202
+ },
3203
+ {
3204
+ "epoch": 4.0,
3205
+ "eval_loss": 3648.62841796875,
3206
+ "eval_runtime": 95.4232,
3207
+ "eval_samples_per_second": 16.725,
3208
+ "eval_steps_per_second": 1.048,
3209
+ "step": 400
3210
+ }
3211
+ ],
3212
+ "logging_steps": 1.0,
3213
+ "max_steps": 400,
3214
+ "num_input_tokens_seen": 0,
3215
+ "num_train_epochs": 4,
3216
+ "save_steps": 20,
3217
+ "total_flos": 1.624099600371548e+17,
3218
+ "train_batch_size": 16,
3219
+ "trial_name": null,
3220
+ "trial_params": null
3221
+ }
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9482addc53b06f00993c5982253d0ebd4e0bf4a5f758d64ea8e7b9650b24f55
3
+ size 6392
checkpoint-400/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)