File size: 4,701 Bytes
0b3f0b4
 
 
 
 
 
 
 
 
 
 
29a606c
0b3f0b4
 
 
 
 
 
 
 
 
 
29a606c
0b3f0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
2721980
0b3f0b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2721980
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

import os
import mss
import cv2
import numpy as np
import time
import glob
from ultralytics import YOLO
from openpyxl import Workbook

# Ensure necessary directories exist
save_path = "./"
screenshots_path = os.path.join(save_path, "screenshots")
detect_path = os.path.join(save_path, "runs/detect/")

os.makedirs(save_path, exist_ok=True)
os.makedirs(screenshots_path, exist_ok=True)

# Define pattern classes
classes = ['Head and shoulders bottom', 'Head and shoulders top', 'M_Head', 'StockLine', 'Triangle', 'W_Bottom']

# Load YOLOv8 model
model_path = "model.pt"
if not os.path.exists(model_path):
    raise FileNotFoundError(f"Model file not found: {model_path}")
model = YOLO(model_path)

# Define screen capture region
monitor = {"top": 0, "left": 683, "width": 683, "height": 768}

# Create an Excel file
excel_file = os.path.join(save_path, "classification_results.xlsx")
wb = Workbook()
ws = wb.active
ws.append(["Timestamp", "Predicted Image Path", "Label"])  # Headers

# Initialize video writer
video_path = "./video/annotated_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
fps = 0.5  # Adjust frames per second as needed
video_writer = None

# Start capturing
with mss.mss() as sct:
    start_time = time.time()
    last_capture_time = start_time  # Track the last capture time
    frame_count = 0
    
    while True:
        # Continuously capture the screen
        sct_img = sct.grab(monitor)
        img = np.array(sct_img)
        img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)

        # Check if 60 seconds have passed since last YOLO prediction
        current_time = time.time()
        if current_time - last_capture_time >= 60:
            # Take screenshot for YOLO prediction
            timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
            image_name = f"predicted_images_{timestamp}_{frame_count}.png"
            image_path = os.path.join(screenshots_path, image_name)
            cv2.imwrite(image_path, img)

            # Run YOLO model and get save directory
            results = model(image_path, save=True)
            predict_path = results[0].save_dir if results else None

            # Find the latest annotated image inside predict_path
            if predict_path and os.path.exists(predict_path):
                annotated_images = sorted(glob.glob(os.path.join(predict_path, "*.jpg")), key=os.path.getmtime, reverse=True)
                final_image_path = annotated_images[0] if annotated_images else image_path
            else:
                final_image_path = image_path  # Fallback to original image

            # Determine predicted label
            if results and results[0].boxes:
                class_indices = results[0].boxes.cls.tolist()
                predicted_label = classes[int(class_indices[0])]
            else:
                predicted_label = "No pattern detected"

            # Insert data into Excel (store path instead of image)
            ws.append([timestamp, final_image_path, predicted_label])

            # Read the image for video processing
            annotated_img = cv2.imread(final_image_path)
            if annotated_img is not None:
                # Add timestamp and label text to the image
                font = cv2.FONT_HERSHEY_SIMPLEX
                cv2.putText(annotated_img, f"{timestamp}", (10, 30), font, 0.7, (0, 255, 0), 2, cv2.LINE_AA)
                cv2.putText(annotated_img, f"{predicted_label}", (10, 60), font, 0.7, (0, 255, 255), 2, cv2.LINE_AA)
                
                # Initialize video writer if not already initialized
                if video_writer is None:
                    height, width, layers = annotated_img.shape
                    video_writer = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
                
                video_writer.write(annotated_img)

            print(f"Frame {frame_count}: {final_image_path} -> {predicted_label}")
            frame_count += 1

            # Update the last capture time
            last_capture_time = current_time

        # Save the Excel file periodically
        wb.save(excel_file)

        # If you want to continuously display the screen, you can add this line
        cv2.imshow("Screen Capture", img)

        # Break if 'q' is pressed (you can exit the loop this way)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

# Release video writer
if video_writer is not None:
    video_writer.release()
    print(f"Video saved at {video_path}")

# Remove all files in screenshots directory
for file in os.scandir(screenshots_path):
    os.remove(file.path)
os.rmdir(screenshots_path)

print(f"Results saved to {excel_file}")

# Close OpenCV window
cv2.destroyAllWindows()