Model save
Browse files- README.md +67 -0
- all_results.json +8 -0
- config.json +39 -0
- configuration_minicpm.py +206 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- runs/Mar07_08-20-57_ps/events.out.tfevents.1741307122.ps.1973008.0 +3 -0
- runs/Mar11_19-27-27_ps/events.out.tfevents.1741692676.ps.3149603.0 +3 -0
- special_tokens_map.json +24 -0
- tokenization_xmodel.py +249 -0
- tokenizer.model +3 -0
- tokenizer_config.json +46 -0
- train_results.json +8 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
model_name: Xmodel2-1.2B-Open-R1-GRPO
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
- trl
|
7 |
+
- grpo
|
8 |
+
licence: license
|
9 |
+
---
|
10 |
+
|
11 |
+
# Model Card for Xmodel2-1.2B-Open-R1-GRPO
|
12 |
+
|
13 |
+
This model is a fine-tuned version of [None](https://huggingface.co/None).
|
14 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
15 |
+
|
16 |
+
## Quick start
|
17 |
+
|
18 |
+
```python
|
19 |
+
from transformers import pipeline
|
20 |
+
|
21 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
22 |
+
generator = pipeline("text-generation", model="foamliu/Xmodel2-1.2B-Open-R1-GRPO", device="cuda")
|
23 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
24 |
+
print(output["generated_text"])
|
25 |
+
```
|
26 |
+
|
27 |
+
## Training procedure
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
33 |
+
|
34 |
+
### Framework versions
|
35 |
+
|
36 |
+
- TRL: 0.16.0.dev0
|
37 |
+
- Transformers: 4.49.0
|
38 |
+
- Pytorch: 2.5.1
|
39 |
+
- Datasets: 3.3.2
|
40 |
+
- Tokenizers: 0.21.0
|
41 |
+
|
42 |
+
## Citations
|
43 |
+
|
44 |
+
Cite GRPO as:
|
45 |
+
|
46 |
+
```bibtex
|
47 |
+
@article{zhihong2024deepseekmath,
|
48 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
49 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
50 |
+
year = 2024,
|
51 |
+
eprint = {arXiv:2402.03300},
|
52 |
+
}
|
53 |
+
|
54 |
+
```
|
55 |
+
|
56 |
+
Cite TRL as:
|
57 |
+
|
58 |
+
```bibtex
|
59 |
+
@misc{vonwerra2022trl,
|
60 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
61 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
62 |
+
year = 2020,
|
63 |
+
journal = {GitHub repository},
|
64 |
+
publisher = {GitHub},
|
65 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
66 |
+
}
|
67 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.07466813361974993,
|
4 |
+
"train_runtime": 412723.7185,
|
5 |
+
"train_samples": 93733,
|
6 |
+
"train_samples_per_second": 0.227,
|
7 |
+
"train_steps_per_second": 0.008
|
8 |
+
}
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/data4/liuyang/checkpoints/xl_g_line_s2_decay_exp10_260k_sft_v2_dedup/iter-0020000-minicpm",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
10 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
11 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
12 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
13 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
14 |
+
},
|
15 |
+
"bos_token_id": 1,
|
16 |
+
"dim_model_base": 256,
|
17 |
+
"eos_token_id": 2,
|
18 |
+
"hidden_act": "silu",
|
19 |
+
"hidden_act_param": 0.03,
|
20 |
+
"hidden_size": 1536,
|
21 |
+
"initializer_range": 0.1,
|
22 |
+
"intermediate_size": 3840,
|
23 |
+
"max_position_embeddings": 131072,
|
24 |
+
"mlp_bias": false,
|
25 |
+
"model_type": "minicpm",
|
26 |
+
"num_attention_heads": 24,
|
27 |
+
"num_hidden_layers": 48,
|
28 |
+
"num_key_value_heads": 8,
|
29 |
+
"pretraining_tp": 1,
|
30 |
+
"rms_norm_eps": 1e-05,
|
31 |
+
"rope_scaling": null,
|
32 |
+
"rope_theta": 500000.0,
|
33 |
+
"scale_depth": 1.4,
|
34 |
+
"scale_emb": 12,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.49.0",
|
37 |
+
"use_cache": false,
|
38 |
+
"vocab_size": 65280
|
39 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MiniCPM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class MiniCPMConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"relu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
hidden_act_param (`float`, *optional*, defaults to 0.):
|
64 |
+
The bias for shiftrelu or threshold for fatrelu.
|
65 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
66 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
67 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
68 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
71 |
+
The epsilon used by the rms normalization layers.
|
72 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
74 |
+
relevant if `config.is_decoder=True`.
|
75 |
+
pad_token_id (`int`, *optional*):
|
76 |
+
Padding token id.
|
77 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
78 |
+
Beginning of stream token id.
|
79 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
80 |
+
End of stream token id.
|
81 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
82 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
83 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
84 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
85 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
86 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
87 |
+
Whether to tie weight embeddings
|
88 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
89 |
+
The base period of the RoPE embeddings.
|
90 |
+
rope_scaling (`Dict`, *optional*):
|
91 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
92 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
93 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
94 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
95 |
+
these scaling strategies behave:
|
96 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
97 |
+
experimental feature, subject to breaking API changes in future versions.
|
98 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
99 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
100 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
101 |
+
The dropout ratio for the attention probabilities.
|
102 |
+
|
103 |
+
```python
|
104 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
105 |
+
|
106 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
107 |
+
>>> configuration = MiniCPMConfig()
|
108 |
+
|
109 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
110 |
+
>>> model = MiniCPMModel(configuration)
|
111 |
+
|
112 |
+
>>> # Accessing the model configuration
|
113 |
+
>>> configuration = model.config
|
114 |
+
```"""
|
115 |
+
|
116 |
+
model_type = "minicpm"
|
117 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_size=32000,
|
122 |
+
hidden_size=4096,
|
123 |
+
intermediate_size=11008,
|
124 |
+
num_hidden_layers=32,
|
125 |
+
num_attention_heads=32,
|
126 |
+
num_key_value_heads=None,
|
127 |
+
hidden_act="relu",
|
128 |
+
hidden_act_param=0.,
|
129 |
+
max_position_embeddings=2048,
|
130 |
+
initializer_range=0.02,
|
131 |
+
rms_norm_eps=1e-6,
|
132 |
+
use_cache=True,
|
133 |
+
pad_token_id=None,
|
134 |
+
bos_token_id=1,
|
135 |
+
eos_token_id=2,
|
136 |
+
pretraining_tp=1,
|
137 |
+
tie_word_embeddings=True,
|
138 |
+
rope_theta=10000.0,
|
139 |
+
rope_scaling=None,
|
140 |
+
attention_bias=False,
|
141 |
+
attention_dropout=0.0,
|
142 |
+
scale_emb=1,
|
143 |
+
dim_model_base=1,
|
144 |
+
scale_depth=1,
|
145 |
+
**kwargs,
|
146 |
+
):
|
147 |
+
self.vocab_size = vocab_size
|
148 |
+
self.max_position_embeddings = max_position_embeddings
|
149 |
+
self.hidden_size = hidden_size
|
150 |
+
self.intermediate_size = intermediate_size
|
151 |
+
self.num_hidden_layers = num_hidden_layers
|
152 |
+
self.num_attention_heads = num_attention_heads
|
153 |
+
|
154 |
+
# for backward compatibility
|
155 |
+
if num_key_value_heads is None:
|
156 |
+
num_key_value_heads = num_attention_heads
|
157 |
+
|
158 |
+
self.num_key_value_heads = num_key_value_heads
|
159 |
+
self.hidden_act = hidden_act
|
160 |
+
self.hidden_act_param = hidden_act_param
|
161 |
+
self.initializer_range = initializer_range
|
162 |
+
self.rms_norm_eps = rms_norm_eps
|
163 |
+
self.pretraining_tp = pretraining_tp
|
164 |
+
self.use_cache = use_cache
|
165 |
+
self.rope_theta = rope_theta
|
166 |
+
self.rope_scaling = rope_scaling
|
167 |
+
self._rope_scaling_validation()
|
168 |
+
self.attention_bias = attention_bias
|
169 |
+
self.attention_dropout = attention_dropout
|
170 |
+
self.scale_emb = scale_emb
|
171 |
+
self.dim_model_base = dim_model_base
|
172 |
+
self.scale_depth = scale_depth
|
173 |
+
|
174 |
+
super().__init__(
|
175 |
+
pad_token_id=pad_token_id,
|
176 |
+
bos_token_id=bos_token_id,
|
177 |
+
eos_token_id=eos_token_id,
|
178 |
+
tie_word_embeddings=tie_word_embeddings,
|
179 |
+
**kwargs,
|
180 |
+
)
|
181 |
+
try:
|
182 |
+
import flash_attn
|
183 |
+
self._attn_implementation = "flash_attention_2"
|
184 |
+
except:
|
185 |
+
pass
|
186 |
+
|
187 |
+
def _rope_scaling_validation(self):
|
188 |
+
"""
|
189 |
+
Validate the `rope_scaling` configuration.
|
190 |
+
"""
|
191 |
+
if self.rope_scaling is None:
|
192 |
+
return
|
193 |
+
|
194 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
195 |
+
raise ValueError(
|
196 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
197 |
+
f"got {self.rope_scaling}"
|
198 |
+
)
|
199 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
200 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
201 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
202 |
+
raise ValueError(
|
203 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
204 |
+
)
|
205 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
206 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.49.0"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c17c159191aaf2500b8b32492acebe3e88f6dff3ff4ba2a49a7d41eb04675e9
|
3 |
+
size 2704101416
|
runs/Mar07_08-20-57_ps/events.out.tfevents.1741307122.ps.1973008.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d977be0daa7b067643c0ab417f71d9e6e20ae381efbe5230fb8ad5d60b0bdff0
|
3 |
+
size 2142593
|
runs/Mar11_19-27-27_ps/events.out.tfevents.1741692676.ps.3149603.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e79ca37aee09928834e1c03fbaf6a8ef667d7d3088eb32cfb6c18358e161d0e
|
3 |
+
size 180078
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "</s>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenization_xmodel.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
|
21 |
+
import os
|
22 |
+
from shutil import copyfile
|
23 |
+
from typing import Any, Dict, List, Optional, Tuple
|
24 |
+
|
25 |
+
import sentencepiece as spm
|
26 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
27 |
+
from transformers.utils import logging
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
32 |
+
|
33 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
34 |
+
"vocab_file": {},
|
35 |
+
"tokenizer_file": {},
|
36 |
+
}
|
37 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
|
38 |
+
|
39 |
+
|
40 |
+
class XModelTokenizer(PreTrainedTokenizer):
|
41 |
+
"""
|
42 |
+
Construct a XModel tokenizer. Based on byte-level Byte-Pair-Encoding.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
vocab_file (`str`):
|
46 |
+
Path to the vocabulary file.
|
47 |
+
"""
|
48 |
+
|
49 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
50 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
51 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
52 |
+
model_input_names = ["input_ids", "attention_mask"]
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
vocab_file,
|
57 |
+
unk_token="<unk>",
|
58 |
+
bos_token="<s>",
|
59 |
+
eos_token="</s>",
|
60 |
+
pad_token=None,
|
61 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
62 |
+
add_bos_token=True,
|
63 |
+
add_eos_token=False,
|
64 |
+
clean_up_tokenization_spaces=False,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
68 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
69 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
70 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
71 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
72 |
+
self.vocab_file = vocab_file
|
73 |
+
self.add_bos_token = add_bos_token
|
74 |
+
self.add_eos_token = add_eos_token
|
75 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
76 |
+
self.sp_model.Load(vocab_file)
|
77 |
+
super().__init__(
|
78 |
+
bos_token=bos_token,
|
79 |
+
eos_token=eos_token,
|
80 |
+
unk_token=unk_token,
|
81 |
+
pad_token=pad_token,
|
82 |
+
add_bos_token=add_bos_token,
|
83 |
+
add_eos_token=add_eos_token,
|
84 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
85 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
86 |
+
**kwargs,
|
87 |
+
)
|
88 |
+
|
89 |
+
def __getstate__(self):
|
90 |
+
state = self.__dict__.copy()
|
91 |
+
state["sp_model"] = None
|
92 |
+
return state
|
93 |
+
|
94 |
+
def __setstate__(self, d):
|
95 |
+
self.__dict__ = d
|
96 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
97 |
+
self.sp_model.Load(self.vocab_file)
|
98 |
+
|
99 |
+
@property
|
100 |
+
def vocab_size(self):
|
101 |
+
"""Returns vocab size"""
|
102 |
+
return self.sp_model.get_piece_size()
|
103 |
+
|
104 |
+
def get_vocab(self):
|
105 |
+
"""Returns vocab as a dict"""
|
106 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
107 |
+
vocab.update(self.added_tokens_encoder)
|
108 |
+
return vocab
|
109 |
+
|
110 |
+
def _tokenize(self, text):
|
111 |
+
"""Returns a tokenized string."""
|
112 |
+
return self.sp_model.encode(text, out_type=str)
|
113 |
+
|
114 |
+
def _convert_token_to_id(self, token):
|
115 |
+
"""Converts a token (str) in an id using the vocab."""
|
116 |
+
return self.sp_model.piece_to_id(token)
|
117 |
+
|
118 |
+
def _convert_id_to_token(self, index):
|
119 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
120 |
+
token = self.sp_model.IdToPiece(index)
|
121 |
+
return token
|
122 |
+
|
123 |
+
def convert_tokens_to_string(self, tokens):
|
124 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
125 |
+
current_sub_tokens = []
|
126 |
+
out_string = ""
|
127 |
+
prev_is_special = False
|
128 |
+
for i, token in enumerate(tokens):
|
129 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
130 |
+
if token in self.all_special_tokens:
|
131 |
+
if not prev_is_special and i != 0:
|
132 |
+
out_string += " "
|
133 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
134 |
+
prev_is_special = True
|
135 |
+
current_sub_tokens = []
|
136 |
+
else:
|
137 |
+
current_sub_tokens.append(token)
|
138 |
+
prev_is_special = False
|
139 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
140 |
+
return out_string
|
141 |
+
|
142 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
143 |
+
"""
|
144 |
+
Save the vocabulary and special tokens file to a directory.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
save_directory (`str`):
|
148 |
+
The directory in which to save the vocabulary.
|
149 |
+
|
150 |
+
Returns:
|
151 |
+
`Tuple(str)`: Paths to the files saved.
|
152 |
+
"""
|
153 |
+
if not os.path.isdir(save_directory):
|
154 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
155 |
+
return
|
156 |
+
out_vocab_file = os.path.join(
|
157 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
158 |
+
)
|
159 |
+
|
160 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
161 |
+
copyfile(self.vocab_file, out_vocab_file)
|
162 |
+
elif not os.path.isfile(self.vocab_file):
|
163 |
+
with open(out_vocab_file, "wb") as fi:
|
164 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
165 |
+
fi.write(content_spiece_model)
|
166 |
+
|
167 |
+
return (out_vocab_file,)
|
168 |
+
|
169 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
170 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
171 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
172 |
+
|
173 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
174 |
+
|
175 |
+
if token_ids_1 is not None:
|
176 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
177 |
+
|
178 |
+
return output
|
179 |
+
|
180 |
+
def get_special_tokens_mask(
|
181 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
|
182 |
+
already_has_special_tokens: bool = False
|
183 |
+
) -> List[int]:
|
184 |
+
"""
|
185 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
186 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
token_ids_0 (`List[int]`):
|
190 |
+
List of IDs.
|
191 |
+
token_ids_1 (`List[int]`, *optional*):
|
192 |
+
Optional second list of IDs for sequence pairs.
|
193 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
194 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
198 |
+
"""
|
199 |
+
if already_has_special_tokens:
|
200 |
+
return super().get_special_tokens_mask(
|
201 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
202 |
+
)
|
203 |
+
|
204 |
+
bos_token_id = [1] if self.add_bos_token else []
|
205 |
+
eos_token_id = [1] if self.add_eos_token else []
|
206 |
+
|
207 |
+
if token_ids_1 is None:
|
208 |
+
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
209 |
+
return (
|
210 |
+
bos_token_id
|
211 |
+
+ ([0] * len(token_ids_0))
|
212 |
+
+ eos_token_id
|
213 |
+
+ bos_token_id
|
214 |
+
+ ([0] * len(token_ids_1))
|
215 |
+
+ eos_token_id
|
216 |
+
)
|
217 |
+
|
218 |
+
def create_token_type_ids_from_sequences(
|
219 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
220 |
+
) -> List[int]:
|
221 |
+
"""
|
222 |
+
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
|
223 |
+
sequence pair mask has the following format:
|
224 |
+
|
225 |
+
```
|
226 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
227 |
+
| first sequence | second sequence |
|
228 |
+
```
|
229 |
+
|
230 |
+
if token_ids_1 is None, only returns the first portion of the mask (0s).
|
231 |
+
|
232 |
+
Args:
|
233 |
+
token_ids_0 (`List[int]`):
|
234 |
+
List of ids.
|
235 |
+
token_ids_1 (`List[int]`, *optional*):
|
236 |
+
Optional second list of IDs for sequence pairs.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
240 |
+
"""
|
241 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
242 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
243 |
+
|
244 |
+
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
|
245 |
+
|
246 |
+
if token_ids_1 is not None:
|
247 |
+
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
|
248 |
+
|
249 |
+
return output
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3d91965878687648480d3e4dfedb5c66600b1612559e4579cdba76934b7d47e
|
3 |
+
size 1091044
|
tokenizer_config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": true,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": true,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"auto_map": {
|
31 |
+
"AutoTokenizer": [
|
32 |
+
"tokenization_xmodel.XModelTokenizer",
|
33 |
+
null
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"bos_token": "<s>",
|
37 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
38 |
+
"clean_up_tokenization_spaces": false,
|
39 |
+
"eos_token": "</s>",
|
40 |
+
"extra_special_tokens": {},
|
41 |
+
"model_max_length": 1000000000000000019884624838656,
|
42 |
+
"pad_token": "</s>",
|
43 |
+
"sp_model_kwargs": {},
|
44 |
+
"tokenizer_class": "XModelTokenizer",
|
45 |
+
"unk_token": "<unk>"
|
46 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.07466813361974993,
|
4 |
+
"train_runtime": 412723.7185,
|
5 |
+
"train_samples": 93733,
|
6 |
+
"train_samples_per_second": 0.227,
|
7 |
+
"train_steps_per_second": 0.008
|
8 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac80f55a233e25ce7a7a623e81cb8831231a6cc5b51750c83f2109c1403c6ca6
|
3 |
+
size 8120
|