Update README.md
Browse files
README.md
CHANGED
@@ -1,37 +0,0 @@
|
|
1 |
-
# Chinese BART-Base
|
2 |
-
|
3 |
-
## Model description
|
4 |
-
|
5 |
-
This is an implementation of CPT-Base. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project.
|
6 |
-
|
7 |
-
[**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf)
|
8 |
-
|
9 |
-
Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu
|
10 |
-
|
11 |
-
**Github Link:** https://github.com/fastnlp/CPT
|
12 |
-
|
13 |
-
## Usage
|
14 |
-
|
15 |
-
```python
|
16 |
-
>>> from modeling_cpt import CPTForConditionalGeneration
|
17 |
-
>>> from transformers import BertTokenizer
|
18 |
-
>>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-base")
|
19 |
-
>>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-base")
|
20 |
-
>>> inputs = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt')
|
21 |
-
>>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20)
|
22 |
-
>>> print(tokenizer.convert_ids_to_tokens(pred_ids[i]))
|
23 |
-
['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]']
|
24 |
-
```
|
25 |
-
|
26 |
-
**Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.**
|
27 |
-
|
28 |
-
## Citation
|
29 |
-
|
30 |
-
```bibtex
|
31 |
-
@article{shao2021cpt,
|
32 |
-
title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation},
|
33 |
-
author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu},
|
34 |
-
journal={arXiv preprint arXiv:2109.05729},
|
35 |
-
year={2021}
|
36 |
-
}
|
37 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|