Create readme file
Browse files
README.md
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
base_model:
|
5 |
+
- Qwen/Qwen2.5-7B-Instruct
|
6 |
+
library_name: transformers
|
7 |
+
---
|
8 |
+
## Introduction
|
9 |
+
Flock Web3 Agent Model is aimed at helping process **function call** queries in the **specific web3 domain**.
|
10 |
+
|
11 |
+
## Requirements
|
12 |
+
We advise you to use the latest version of `transformers`.
|
13 |
+
|
14 |
+
## Quickstart
|
15 |
+
|
16 |
+
Given a query and a list of available tools. The model generate function calls using the provided tools to respond the query correctly.
|
17 |
+
|
18 |
+
**Example query and tools format**
|
19 |
+
|
20 |
+
```python
|
21 |
+
input_example=
|
22 |
+
{
|
23 |
+
"query": "Track crosschain message verification, implement timeout recovery procedures.",
|
24 |
+
"tools": [
|
25 |
+
{"type": "function", "function": {"name": "track_crosschain_message", "description": "Track the status of a crosschain message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}}}}},
|
26 |
+
{"type": "function", "function": {"name": "schedule_timeout_check", "description": "Schedule a timeout check for a message", "parameters": {"type": "object", "properties": {"message_id": {"type": "string"}, "timeout": {"type": "integer"}}}}}
|
27 |
+
]
|
28 |
+
}
|
29 |
+
|
30 |
+
```
|
31 |
+
|
32 |
+
**Function calling generation**
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
36 |
+
import json
|
37 |
+
|
38 |
+
model_name = "flock-io/Flock_Web3_Agent_Model"
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
model_name,
|
41 |
+
torch_dtype="auto",
|
42 |
+
device_map="auto"
|
43 |
+
)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
|
46 |
+
messages = [
|
47 |
+
{"role": "system", "content": "You are a helpful assistant with access to the following functions. Use them if required -"
|
48 |
+
+ json.dumps(input_example["tools"], ensure_ascii=False)},
|
49 |
+
{"role": "user", "content": input_example["tools"]}
|
50 |
+
]
|
51 |
+
text = tokenizer.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
tokenize=False,
|
54 |
+
add_generation_prompt=True
|
55 |
+
)
|
56 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
57 |
+
generated_ids = model.generate(
|
58 |
+
**model_inputs,
|
59 |
+
max_new_tokens=3000
|
60 |
+
)
|
61 |
+
generated_ids = [
|
62 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
63 |
+
]
|
64 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
65 |
+
```
|
66 |
+
Here provide
|