File size: 93,831 Bytes
74b25e7 b151c48 74b25e7 b151c48 c246da1 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 b151c48 c246da1 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 c246da1 74b25e7 b151c48 74b25e7 b151c48 74b25e7 b151c48 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 74b25e7 c246da1 b151c48 74b25e7 c246da1 74b25e7 c246da1 74b25e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 |
---
language:
- uz
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4737
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: Dam olish va ovqatlanish uchun tanaffusning davomiyligi qanday
belgilangan?
sentences:
- "Ish kuni (smena) davomida xodimga dam olish va ovqatlanish uchun davomiyligi\
\ ko‘pi bilan \nikki soat va kamida o‘ttiz daqiqa bo‘lgan, ish vaqtiga kiritilmaydigan\
\ tanaffus berilishi kerak. Ichki \nmehnat tartibi qoidalarida yoki mehnat shartnomasida,\
\ agar xodim uchun belgilangan kunlik ishning \n(smenaning) davomiyligi to‘rt\
\ soatdan oshmasa, unga mazkur tanaffus berilmasligi nazarda tutilishi \nmumkin.\
\ \nDam olish va ovqatlanish uchun tanaffus berish vaqti va uning aniq davomiyligi\
\ ichki \nmehnat tartibi qoidalarida yoki xodim va ish beruvchi o‘rtasidagi kelishuvga\
\ ko‘ra belgilanadi. Dam olish va ovqatlanish uchun tanaffus vaqti umuman barcha\
\ xodimlar uchun yoki tarkibiy \nbo‘linmalar, brigadalar va xodimlarning ayrim\
\ guruhlari uchun alohida belgilanishi mumkin. \nXodimlar dam olish va ovqatlanish\
\ uchun tanaffusdan o‘z ixtiyor iga ko‘ra foydalanadi. Bu \nvaqtda ular ish joyidan\
\ chiqib ketishi mumkin. \nAgar ish kunining (smenaning) davomiyligi sakkiz soatdan\
\ oshgan hollarda xodimlar uchun \nish vaqtini jamlab hisobga olish belgilangan\
\ bo‘lsa, xodimga dam olish va ovqatlanish uchun ikk ita \ntanaffus berilishi\
\ kerak. \nIshlab chiqarish (ish) sharoitlariga ko‘ra dam olish va ovqatlanish\
\ uchun tanaffus berish \nimkoni bo‘lmagan ishlarda ish beruvchi xodimga ish vaqtida\
\ dam olish va ovqat yeyish imkoniyatini \nta’minlashi shart. Bunday ishlarning\
\ r o‘yxati, shuningdek dam olish va ovqat yeyish uchun joylar \nichki mehnat\
\ tartib qoidalari bilan belgilanadi. \nQonunchilikda, sanitariya normalari va\
\ qoidalarida ayrim toifadagi xodimlarga dam olish va \novqatlanish uchun tanaffus\
\ berishning o‘ziga xos xususiyatlari nazarda tutilishi mumkin."
- "taqdirda, mehnat shartnom asining barcha nusxalarida mansabdor shaxsning imzosi\
\ muhr bilan \ntasdiqlanadi. Qo‘shimcha kelishuvning bir nusxasi xodimga beriladi,\
\ boshqasi (boshqalari) ish \nberuvchida mehnat shartnomasi bilan birga saqlanadi.\
\ Xodim tomonidan qo‘shimcha kelishuvning \nnusxasi olinganligi xodimning ish\
\ beruvchida saqlanadigan qo‘shimcha kelishuvning nusxasiga \nqo‘yilgan qo‘shimcha\
\ imzosi bilan tasdiqlanadi. \nXodimni doimiy boshqa ishga o‘tkazish, mehnat shartnomasida\
\ nazarda tutilgan mehnat \nshartlarini o‘zgartirish, shuningdek mehnat shartnomasida\
\ shart qilib ko‘rsatilgan ish joyini \no‘zgartirish to‘g‘risidagi buyruqlar mehnat\
\ shartnomasi taraflari tomonidan qo‘shimcha kelishuv \ntuzish orqali ushbu shartnomaga\
\ kiritilgan o‘zgartishlarning mazmuniga aynan muvofiq ravishda \nchiqariladi\
\ va xodimga imzo qo‘ydirib e’lon qilinadi. \nXodimni vaqtincha boshqa ishga\
\ o‘tkazish o‘tkazishning muddati ko‘rsatilgan holda buyruq \nbilan rasmiylashtiriladi.\
\ \nMehnat shartnomasi taraflarining kelishuviga ko‘ra va xodimning tashabbusi\
\ bilan xodimni \nvaqtincha boshqa ishga o‘tkazish to‘g‘risida buyruq chiqarish\
\ uchun xodimning yozma arizasi asos \nbo‘ladi. \nXodim sog‘lig‘ining holatiga\
\ ko‘ra xodimni vaqtincha boshqa ishga o‘tkazish, homilador \nayolni, shuningdek\
\ ikki yoshga to‘lmagan bolasini parvarishlayotgan ota-onadan birini (vasiyni)\
\ \nularning avvalgi ishni bajarish imkoniyati bo‘lmagan taqdirda vaqtincha boshqa\
\ ishga o‘tkazish \nhaqida buyruq chiqarish uchun ularning arizasi va tibbiy xulosa\
\ asos bo‘ladi. \nIsh beruvchining tashabbusiga ko‘ra xodimni vaqtincha boshqa\
\ ishga o‘tkazish to‘g‘risida \nbuyruq chiqarish uchun ishlab chiqarish zaruriyati\
\ yoki bekor turib qolish faktlarining mavjudligi \nasos bo‘ladi. \nXodimni vaqtincha\
\ boshqa ishga o‘tkazish mehnat shartnomasida aks ettirilmaydi."
- "Ishlanmaydigan bayram kunlari arafasida har kunlik ishning (smenaning) davomiyligi\
\ \nbarcha xodimlar uchun kamida bir soatga qisqartiriladi. \nBayramdan oldingi\
\ kuni ishning (smenaning) davomiyligini qisqartirish imkoni bo‘lmagan \nuzluksiz\
\ ishlaydigan tashkilotlarda va ayrim turdagi ishlarda ortiqcha ishlaganlik xodimga\
\ \nqo‘shimcha dam olish vaqti berish yoki xodimning roziligi bilan ish vaqtidan\
\ tashqari ish uchun \nbelgilangan normalar bo‘yicha haq to‘lash orqali kompensatsiya\
\ qilinadi."
- source_sentence: Jamoaviy muzokaralar ishtirokchilari olingan ma’lumotlarni oshkor
qilmasligi lozimligi haqida {chapter} va {section}da qanday ko‘rsatmalar berilgan?
sentences:
- "Vaqtincha mehnatga qobiliyatsizlik davri va xodim haqiqatda ishda bo‘lmagan \
\ boshqa \ndavrlar dastlabki sinov muddatiga qo‘shilmaydi."
- "Tashkilot rahbari, uning o‘rinbosarlari, tashkilot bosh buxgalteri va tashkilot\
\ alohida \nbo‘linmasi rahbari tashkilotga o‘zi bevosita yetkazgan haqiqiy zarar\
\ uchun to ‘liq moddiy javobgar \nbo‘ladi. \nUshbu moddaning birinchi qismida\
\ ko‘rsatilgan shaxslar aybli harakatlari (harakatsizligi) \ntufayli yetkazilgan\
\ zararning o‘rnini tashkilot mulkdorining (aksiyadorlar, ishtirokchilar, muassislar\
\ \numumiy yig‘ilishining) yoxud kuzatuv kengashining yoki mulkdor vakolat bergan\
\ boshqa organning \ntalabiga binoan qoplaydi. Bunda zararlarni hisob -kitob qilish\
\ fuqarolik to‘g‘risidagi qonunchilikda \nnazarda tutilgan normalarga muvofiq\
\ amalga oshiriladi."
- "Ijtimoiy sheriklikning har qanday tarafi jamoaviy muzokaralar tashabbuskori bo‘lishi\
\ \nmumkin. \nAvvalgi jamoa kelishuvining, jamoa shartnomasining amal qilish muddati\
\ tugaguniga qadar \nuch oy ichida yoki ushbu hujjatlarda belgilangan muddatlarda\
\ ijtimoiy sheriklikning har qanday tarafi \nboshqa tarafga yangi jamoa kelishuvini,\
\ jamoa shartnomasini tuzish yuzasidan muzokaralar boshlash \nto‘g‘risida yozma\
\ xabar yuborishga haqlidir. \nIsh beruvchilarning manfaatlarini ifoda etuvchi\
\ shaxslar, shuningdek ish beruvchilar, \nmahalliy ijro etuvchi hokimiyat organlari,\
\ davlat boshqaruvi organlari, siyosiy partiyalar tashkil etgan \nyoki moliyalashtiradigan\
\ tashkilotlar yoxud organlar tomonidan xo dimlar nomidan jamoaviy muzokaralar\
\ olib borilishiga hamda jamoa kelishuvlari va jamoa shartnomasi tuzilishiga yo‘l\
\ \nqo‘yilmaydi. \nIjtimoiy sheriklik taraflari tegishli so‘rov olingan kundan\
\ e’tiboran ikki haftadan \nkechiktirmay jamoaviy muzokaralar olib borish uchun\
\ zarur bo‘lgan o‘zidagi mavjud axborotni bir -\nbiriga taqdim etishi kerak. \n\
Jamoaviy muzokaralar ishtirokchilari, jamoaviy muzokaralar olib borish bilan bog‘liq\
\ \nbo‘lgan boshqa shaxslar olingan ma’lumotlarni, agar ushbu ma’lumotlar davlat\
\ sirlariga yok i qonun \nbilan qo‘riqlanadigan boshqa sirga taalluqli bo‘lsa,\
\ oshkor qilmasligi lozim."
- source_sentence: Mehnat shartnomasi bekor qilinganda xodimga berilishi kerak bo‘lgan
summalar qanday muddatda to‘lanishi kerak?
sentences:
- "nafaqasi to‘lanadi. Agar ish beruvchi mehnatga qobiliyatsizlik varaqasida ko‘rsatilgan\
\ muddatda \nboshqa ish topib berolmagan bo‘lsa, buning oqibatida bekor o‘tgan\
\ kunlar uchun mazkur nafaqa \numumiy asoslarda to‘lanadi. \nMehnatda mayib bo‘lganligi\
\ yoki i sh bilan bog‘liq holda sog‘lig‘iga boshqacha tarzda \nshikast yetkazilganligi\
\ munosabati bilan vaqtincha kamroq haq to‘lanadigan ishga o‘tkazilgan \nxodimlarga\
\ ularning sog‘lig‘i shikastlanganligi uchun javobgar bo‘lgan ish beruvchi avvalgi\
\ ish haqi \nbilan yang i ishda oladigan ish haqi o‘rtasidagi farqni to‘laydi.\
\ Bunday farq mehnat qobiliyati \ntiklanguniga qadar yoki nogironlik belgilanguniga\
\ qadar to‘lanadi. \nQonunchilikda sog‘lig‘ining holatiga ko‘ra yengilroq yoki\
\ noqulay ishlab chiqarish \nomillarining ta’siridan xoli bo‘lgan, kamroq haq\
\ to‘lanadigan ishga o‘tkazilganda avvalgi o‘rtacha \nish haqini saqlab qolishning\
\ yoki davlat ijtimoiy sug‘urtasi bo‘yicha nafaqa to‘lashning boshqa hollari \n\
ham nazarda tutilishi mumkin."
- "Mehnat shartnomasi bekor qilinganda ish beruvchidan xodimga berilishi kerak bo‘lgan\
\ \nbarcha summalarni to‘lash xodim bilan tuzilgan mehnat shartnomasi bekor qilingan\
\ kuni amalga \noshiriladi. Agar xodim mehnat shartnomasi bekor qilingan kuni\
\ ishlamagan bo‘lsa, tegishli summalar \nushbu xodim tomonidan hisob -kitob qilish\
\ to‘g‘risidagi talab taqdim etilganidan keyin uch kundan \nkechiktirmay to‘lanishi\
\ kerak. \nMehnat shartnomasi bekor qilinganda xodimga tegishli bo‘lgan summalar\
\ miqdorlari \nto‘g‘risida nizo chiqqan ta qdirda, ish beruvchi xodimga shak -shubhasiz\
\ tegadigan summani ushbu \nmoddaning birinchi qismida ko‘rsatilgan muddatda to‘lashi\
\ shart. \nIchki hujjatlarda nazarda tutilgan hollarda xodim, agar u hatto mukofot\
\ to‘lanayotgan paytda \nyakka tartibdagi mehnatga oid munosabatlarda bo‘lmasa\
\ ham, bir yildagi ish yakunlariga ko‘ra \nmukofot olish huquqiga ega bo‘ladi."
- "Tashkilot rahbari, uning o‘rinbosarlari, tashkilot b osh buxgalteri va tashkilot\
\ alohida \nbo‘linmasining rahbari bilan tashkilotning ta’sis hujjatlarida yoki\
\ taraflarning kelishuvida \nbelgilangan muddatga muddatli mehnat shartnomasi\
\ tuzilishi mumkin. \nAksiyadorlik jamiyatining rahbari bilan qonunda belgilangan\
\ muddatga muddatli mehnat \nshartnomasi tuziladi. \nQonunda va boshqa normativ-huquqiy\
\ hujjatlarda, tashkilotning ta’sis hujjatlarida tashkilot \nrahbari bilan mehnat\
\ shartnomasi tuzilishidan oldingi tartib -taomillar (tanlov o‘tkazish, lavozimga\
\ \nsaylash yoki tayinlash va hokazo) belgilanishi mumkin. \nTashkilot rahbarini,\
\ uning o‘rinbosarlarini, tashkilot bosh buxgalterini va tashkilotning \nalohida\
\ bo‘linmasi rahbarini ishga qabul qilish chog‘ida olti oygacha muddat bilan dastlabki\
\ sinov \nbelgilanishi mumkin."
- source_sentence: Mehnat nizolarini hal etish jarayonida kimlar ishtirok etadi?
sentences:
- "Vaxta usulida ishlovchi shaxslarga yillik mehnat ta’tili ular vaxtalar oralig‘idagi\
\ dam olish \nkunlaridan foydalanganidan keyin berilishi kerak. \nUshbu moddaning\
\ birinchi qismidagi talab vaxta us ulida ishlovchi shaxslarning ta’tillar \n\
jadvalini tuzish chog‘ida hisobga olinishi kerak. \nAgar vaxta usulida ishlovchi\
\ shaxsning yillik mehnat ta’tilining tugashi vaxtalar oralig‘idagi \ndam olish\
\ kunlariga to‘g‘ri kelsa, unda ish beruvchi xodimning roziligi bilan: \nvaxta\
\ boshlanguniga qadar xodimni vaqtincha boshqa ishga o‘tkazishi; \nvaxta boshlanguniga\
\ qadar xodimga ish haqi saqlanmagan holda ta’til berishi; \nxodimni vaxtaning\
\ boshqa smenasiga o‘tkazishi mumkin."
- "Mehnat to‘g‘risidagi qonunchilikni va mehnat haqidagi boshqa huquqiy hujjatlarni,\
\ mehnat \nshartnomasini qo‘llash masalalari bo‘yicha yakka tartibdagi mehnat\
\ nizolarini (da’vo xususiyatiga \nega yakka tartibdagi me hnat nizolari) ko‘rib\
\ chiqish tartibi ushbu Kodeksda belgilanadi, sudlarda \nmehnat nizolari bo‘yicha\
\ ishlarni ko‘rish tartibi esa bundan tashqari O‘zbekiston Respublikasining \n\
Fuqarolik protsessual kodeksida belgilanadi. Xodim uchun yangi mehnat shartlarini\
\ belgilash yoki mavjud mehnat shartlarini o‘zgartirish \nto‘g‘risidagi yakka\
\ tartibdagi mehnat nizolari (da’vosiz xususiyatga ega bo‘lgan yakka tartibdagi\
\ \nmehnat nizolari) ish beruvchi va kasaba uyushmasi qo‘mitasi tomonidan hal\
\ etiladi."
- "Xodim ish jarayonida o‘z hayotiga va sog‘lig‘iga tahdid soladigan holatlar yuzaga\
\ kelganligi \nto‘g‘risida ish beruvchini darhol xabardor qilib, o‘z hayotiga\
\ va sog‘lig‘iga tahdid soluvchi holatlar \nbartaraf etilguniga qadar tegishli\
\ ishni bajarishni rad etishga haqli. Ana shu davr mobaynida \nxodimning o‘rtacha\
\ ish haqi saqlanadi. Agar xodimning hayotiga va sog‘lig‘iga xavf soladigan holatlar\
\ yuzaga kelmaganligi \naniqlansa, ish beruvchi ushbu Kodeksning 302 — 311-moddalarida\
\ belgilangan tartibda xodimga \nnisbatan xizmat tekshiruvi o‘tkazish tashabbusi\
\ bilan chiqishga haqli."
- source_sentence: O‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan
ota-onaga qanday qo‘shimcha kunlar beriladi, {chapter} va {section}da bu haqida
nima yozilgan?
sentences:
- "Ish beruvchi bilan: \nmehnat shartnomasida shart qilib ko‘rsatilgan ishni bajarishning\
\ butun vaqti davomida \nmasofadan turib ishlash to‘g‘risida nomuayyan muddatga\
\ yoki muddatli mehnat shartnomasi; \nish beruvchining nazorati ostida bo‘lgan\
\ statsionar ish joyidan tashqarida doimiy asosda \nishlash haqidagi shartni o‘z\
\ ichiga olgan mehnat shartnomasiga doir qo‘shimcha kelishuv tuzgan \nshaxslarning\
\ ishi doimiy asosda masofadan turib ishlashdir. \nVaqtincha masofadan turib ishlash\
\ xodim tomonidan mehnat vazifasini uning roziligi bilan \nish beruvchining nazorati\
\ ostida bo‘lgan statsionar ish joyidan tashqarida vaqtincha bajarilishini \n\
nazarda tutuvchi ish rejimidir. Vaqtincha masofadan turib ishlashda mehnat shartnomasi\
\ taraflarining \nroziligi bilan masofadan turib ishlash rejimining muddati shart\
\ qilib ko‘rsatilgan bo‘lishi kerak. \nMasofadan turib ishlash rejimining muddati\
\ quyidagilar vositasida aniqlanishi mumkin: kun, oy va boshqa muddatlarda masofadan\
\ turib ishlashning umumiy muddati davomiyligini \nko‘rsatish; \nmasofadan turib\
\ ishlash boshlanadigan va tugallanadigan kalendar sanani belgilash; \nyuz berishi\
\ bilan masofadan turib ishlash rejimi muddati tugashiga olib keladigan hodisani\
\ \naniqlash (epidemiya munosabati bilan joriy etilgan karantin choralarining\
\ bekor qilinishi, tabiiy yoki \ntexnogen xususiyatga ega halokatlar, ishlab chiqarish\
\ avariyasi oqibatlarining bartaraf etilishi va \nboshqalar). \nVaqtincha masofadan\
\ turib ishlashga o‘tishning eng ko‘p muddati bir yildan oshmasligi \nkerak. \n\
Vaqtincha masofadan turib ishlash mud dati tugagach, ish beruvchi xodim uchun\
\ u \nmasofadan turib ishlash rejimiga o‘tguniga qadar ishlagan avvalgi ish rejimini\
\ belgilashi shart. Agar \nmasofadan turib ishlashga o‘tish vaqtincha bo‘lgan\
\ bo‘lsa, ish beruvchi xodimning o‘tkazilish \nmuddati tugashi bilan unga avvalgi\
\ mehnat vazifasi bo‘yicha ishini ham berishi shart."
- "Masofadan turib ishlovchi xodim bilan tuzilgan mehnat shartnomasi ushbu Kodeksda\
\ \nbelgilangan asoslarga ko‘ra bekor qilinishi mumkin. \nAgar masofadan turib\
\ ishlovchi xodimning ish beruvchining masofadan turib ishlash \nto‘g‘risidagi\
\ mehnat shartnomasini bekor qilish to‘g‘risidagi buyrug‘i bilan tanishib chiqishi\
\ elektron \nhujjat tarzida amalga oshirilsa, ish beruvchi masofadan turib ishlovchi\
\ xodimga mazkur mehnat \nshartnomasi bekor qilingan kuni lozim darajada rasmiylashtirilgan\
\ mehnat shartnomasini bekor qilish \nto‘g‘risidagi buyruqning ko‘chirma nusxasini\
\ ma’lum qilinadigan buyurtma xat bilan pochta orqali \nqog‘ozda yuborishi shart.\
\ \n4-§. Vaxta usulida ishlovchi shaxslarning mehnatini huquqiy jihatdan tartibga\
\ solishning \no‘ziga xos xususiyatlari"
- "Xodimga dam olish uchun emas, balki boshqa maqsadlarda beriladigan, xodimni mehnat\
\ \nmajburiyatlarini bajarishdan ozod etish davrlari dam olish vaqtiga kirmaydi.\
\ Bunday davrlar \njumlasiga quyidagilar kiradi: \nmehnat shartnomasi ish beruvchining\
\ tashabbusiga k o‘ra bekor qilinishi to‘g‘risidagi \nogohlantirish muddati davrida\
\ xodimga ishga joylashish uchun beriladigan ishdan bo‘sh bo‘linadigan \nqo‘shimcha\
\ kunlar; \no‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan\
\ ota -onadan \nbiriga (ota -onaning o‘rnini bosuvchi shaxsga) beriladigan ishdan\
\ bo‘sh bo‘linadigan qo‘shimcha \nkunlar; \nhomilador ayollarga beriladigan ishdan\
\ bo‘sh bo‘linadigan kunlar; \ndonorlarning tibbiy tekshiruv kunida hamda qon\
\ va uning tarkibiy qismlari topshiriladigan \nkunda ishdan ozod etilishi; \n\
ijtimoiy ta’tillar: homiladorlik va tug‘ish ta’tillari, bolani parvarishlash ta’tillari,\
\ o‘quv \nta’tillari va ijodiy ta’tillar; \nxodim tomonidan davlat yoki jamoat\
\ majburiyatlari bajariladigan davrlar; \nish beruvchining va mehnat jamoasining\
\ m anfaatlarini ko‘zlab majburiyatlar bajariladigan \ndavrlar; \nxodimning vaqtincha\
\ mehnatga qobiliyatsizlik davrlari; \nxodimga dam olish uchun emas, balki mehnat\
\ to‘g‘risidagi qonunchilikda va mehnat \nhaqidagi boshqa huquqiy hujjatlarda\
\ belgilangan o‘zga maqsadla rda beriladigan, xodimni mehnat \nmajburiyatlarini\
\ bajarishdan ozod etishning boshqa davrlari."
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE m3 Uzbek Legal Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.6470588235294118
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8349146110056926
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8918406072106262
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9354838709677419
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6470588235294118
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27830487033523077
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17836812144212524
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09354838709677418
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6470588235294118
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8349146110056926
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8918406072106262
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9354838709677419
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7946291757471942
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7489232252040601
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7528153336142288
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6432637571157496
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8368121442125237
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8956356736242884
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9335863377609108
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6432637571157496
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2789373814041745
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1791271347248577
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09335863377609109
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6432637571157496
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8368121442125237
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8956356736242884
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9335863377609108
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7932547875342137
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7475678443420375
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7515302024634125
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6413662239089184
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8330170777988615
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8937381404174574
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9316888045540797
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6413662239089184
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27767235926628714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17874762808349146
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09316888045540797
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6413662239089184
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8330170777988615
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8937381404174574
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9316888045540797
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7914538299798937
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7458096141682476
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7496769641433116
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6204933586337761
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8216318785578748
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8842504743833017
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9259962049335864
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6204933586337761
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2738772928526249
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1768500948766603
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09259962049335864
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6204933586337761
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8216318785578748
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8842504743833017
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9259962049335864
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7779399930379503
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7296602511972529
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7337697408521
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6223908918406073
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8178368121442126
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671726755218216
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9184060721062619
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6223908918406073
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2726122707147375
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17343453510436432
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09184060721062619
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6223908918406073
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8178368121442126
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671726755218216
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9184060721062619
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7727418198937503
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7256528417818741
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7303101255877268
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.5939278937381404
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7950664136622391
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.857685009487666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9146110056925996
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.5939278937381404
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.265022137887413
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1715370018975332
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09146110056925996
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.5939278937381404
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7950664136622391
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.857685009487666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9146110056925996
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7555340391985981
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7042927923857711
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7088145188830932
name: Cosine Map@100
---
# BGE m3 Uzbek Legal Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
- **Language:** uz
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-uz-legal-matryoshka")
# Run inference
sentences = [
'O‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan ota-onaga qanday qo‘shimcha kunlar beriladi, {chapter} va {section}da bu haqida nima yozilgan?',
'Xodimga dam olish uchun emas, balki boshqa maqsadlarda beriladigan, xodimni mehnat \nmajburiyatlarini bajarishdan ozod etish davrlari dam olish vaqtiga kirmaydi. Bunday davrlar \njumlasiga quyidagilar kiradi: \nmehnat shartnomasi ish beruvchining tashabbusiga k o‘ra bekor qilinishi to‘g‘risidagi \nogohlantirish muddati davrida xodimga ishga joylashish uchun beriladigan ishdan bo‘sh bo‘linadigan \nqo‘shimcha kunlar; \no‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan ota -onadan \nbiriga (ota -onaning o‘rnini bosuvchi shaxsga) beriladigan ishdan bo‘sh bo‘linadigan qo‘shimcha \nkunlar; \nhomilador ayollarga beriladigan ishdan bo‘sh bo‘linadigan kunlar; \ndonorlarning tibbiy tekshiruv kunida hamda qon va uning tarkibiy qismlari topshiriladigan \nkunda ishdan ozod etilishi; \nijtimoiy ta’tillar: homiladorlik va tug‘ish ta’tillari, bolani parvarishlash ta’tillari, o‘quv \nta’tillari va ijodiy ta’tillar; \nxodim tomonidan davlat yoki jamoat majburiyatlari bajariladigan davrlar; \nish beruvchining va mehnat jamoasining m anfaatlarini ko‘zlab majburiyatlar bajariladigan \ndavrlar; \nxodimning vaqtincha mehnatga qobiliyatsizlik davrlari; \nxodimga dam olish uchun emas, balki mehnat to‘g‘risidagi qonunchilikda va mehnat \nhaqidagi boshqa huquqiy hujjatlarda belgilangan o‘zga maqsadla rda beriladigan, xodimni mehnat \nmajburiyatlarini bajarishdan ozod etishning boshqa davrlari.',
'Masofadan turib ishlovchi xodim bilan tuzilgan mehnat shartnomasi ushbu Kodeksda \nbelgilangan asoslarga ko‘ra bekor qilinishi mumkin. \nAgar masofadan turib ishlovchi xodimning ish beruvchining masofadan turib ishlash \nto‘g‘risidagi mehnat shartnomasini bekor qilish to‘g‘risidagi buyrug‘i bilan tanishib chiqishi elektron \nhujjat tarzida amalga oshirilsa, ish beruvchi masofadan turib ishlovchi xodimga mazkur mehnat \nshartnomasi bekor qilingan kuni lozim darajada rasmiylashtirilgan mehnat shartnomasini bekor qilish \nto‘g‘risidagi buyruqning ko‘chirma nusxasini ma’lum qilinadigan buyurtma xat bilan pochta orqali \nqog‘ozda yuborishi shart. \n4-§. Vaxta usulida ishlovchi shaxslarning mehnatini huquqiy jihatdan tartibga solishning \no‘ziga xos xususiyatlari',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_1024`, `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_1024 | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.6471 | 0.6433 | 0.6414 | 0.6205 | 0.6224 | 0.5939 |
| cosine_accuracy@3 | 0.8349 | 0.8368 | 0.833 | 0.8216 | 0.8178 | 0.7951 |
| cosine_accuracy@5 | 0.8918 | 0.8956 | 0.8937 | 0.8843 | 0.8672 | 0.8577 |
| cosine_accuracy@10 | 0.9355 | 0.9336 | 0.9317 | 0.926 | 0.9184 | 0.9146 |
| cosine_precision@1 | 0.6471 | 0.6433 | 0.6414 | 0.6205 | 0.6224 | 0.5939 |
| cosine_precision@3 | 0.2783 | 0.2789 | 0.2777 | 0.2739 | 0.2726 | 0.265 |
| cosine_precision@5 | 0.1784 | 0.1791 | 0.1787 | 0.1769 | 0.1734 | 0.1715 |
| cosine_precision@10 | 0.0935 | 0.0934 | 0.0932 | 0.0926 | 0.0918 | 0.0915 |
| cosine_recall@1 | 0.6471 | 0.6433 | 0.6414 | 0.6205 | 0.6224 | 0.5939 |
| cosine_recall@3 | 0.8349 | 0.8368 | 0.833 | 0.8216 | 0.8178 | 0.7951 |
| cosine_recall@5 | 0.8918 | 0.8956 | 0.8937 | 0.8843 | 0.8672 | 0.8577 |
| cosine_recall@10 | 0.9355 | 0.9336 | 0.9317 | 0.926 | 0.9184 | 0.9146 |
| **cosine_ndcg@10** | **0.7946** | **0.7933** | **0.7915** | **0.7779** | **0.7727** | **0.7555** |
| cosine_mrr@10 | 0.7489 | 0.7476 | 0.7458 | 0.7297 | 0.7257 | 0.7043 |
| cosine_map@100 | 0.7528 | 0.7515 | 0.7497 | 0.7338 | 0.7303 | 0.7088 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 4,737 training samples
* Columns: <code>question</code> and <code>chunk</code>
* Approximate statistics based on the first 1000 samples:
| | question | chunk |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 22.45 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 268.97 tokens</li><li>max: 520 tokens</li></ul> |
* Samples:
| question | chunk |
|:------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Ish beruvchi o‘rindoshlik asosida ishga qabul qilishda qanday hujjatlarni talab qilishga haqli emas?</code> | <code>Boshqa ish beruvchiga (asosiy ish joyidan tashqari) o‘rindoshlik asosida ishga kirayotgan <br>shaxslar quyidagilarni taqdim etishi shart: <br>pasportni yoxud uning o‘rnini bosuvchi hujjatni yoki identifikatsiya ID-kartasini; <br>asosiy ish joyidan O ‘zbekiston Respublikasi Bandlik va mehnat munosabatlari vazirligi <br>tomonidan tasdiqlanadigan shakl bo‘yicha ma’lumotnomani; <br>bajarilishi uchun qonunchilikka muvofiq faqat muayyan ish stajiga ega bo‘lgan shaxslar <br>qo‘yilishi mumkin bo‘lgan ishga o‘rindoshlik a sosida qabul qilishda asosiy ish joyidagi mehnat <br>daftarchasining tasdiqlangan ko‘chirma nusxasini yoki elektron mehnat daftarchasidan ko‘chirmani; <br>diplomni, guvohnomani (sertifikatni) yoki ta’lim to‘g‘risidagi yoki kasbiy tayyorgarlik <br>haqidagi boshqa hujjatni, agar bunday ish maxsus bilimlarni yoxud maxsus tayyorgarlikni talab qilsa; <br>mehnat sharoitlari zararli va (yoki) xavfli bo‘lgan ishga qabul qilish chog‘ida asosiy ish <br>joyidan mehnatning xususiyati va shartlari to‘g‘risidagi olingan m...</code> |
| <code>Yakka tartibdagi mehnatga oid munosabatlarni tartibga solishning asosiy jihatlari nimalardan iborat?</code> | <code>Yakka tartibdagi mehnatga oid munosabatlarni va ular bilan bevosita bog‘liq bo‘lgan <br>ijtimoiy munosabatlarni huquqiy jihatdan tartibga solishning asosiy prinsiplari quyidagilardan iborat: <br>mehnat huquqlarining tengligi, mehnat va mashg‘ulotlar sohasida kamsitishni taqiqlash; <br>mehnat erkinligi va majburiy mehnatni taqiqlash; <br>mehnat sohasidagi ijtimoiy sheriklik; <br>mehnat huquqlari ta’minlanishining va mehnat majburiyatlari bajarilishining <br>kafolatlanganligi; <br>xodimning huquqiy holati yomonlashishiga yo‘l qo‘yilmasligi.</code> |
| <code>Tashkilotning ta’sis hujjatlari ish beruvchining huquqlarini qanday ta'sir qiladi?</code> | <code>Ish beruvchi moddiy zarar yetkazilgan aniq sharoitlarni hisobga olgan holda zararni aybdor <br>xodimdan to‘liq yoki qisman undirishdan voz kechish huquq iga ega. Tashkilot mulkdori ish <br>beruvchining mazkur huquqini qonunchilikda, shuningdek tashkilotning ta’sis hujjatlarida nazarda <br>tutilgan hollarda cheklashi mumkin.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:--------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.0169 | 10 | 2.9869 | - | - | - | - | - | - |
| 0.0337 | 20 | 2.7979 | - | - | - | - | - | - |
| 0.0506 | 30 | 2.7458 | - | - | - | - | - | - |
| 0.0675 | 40 | 1.9948 | - | - | - | - | - | - |
| 0.0843 | 50 | 1.8067 | - | - | - | - | - | - |
| 0.1012 | 60 | 1.6556 | - | - | - | - | - | - |
| 0.1180 | 70 | 1.3729 | - | - | - | - | - | - |
| 0.1349 | 80 | 1.9454 | - | - | - | - | - | - |
| 0.1518 | 90 | 0.7781 | - | - | - | - | - | - |
| 0.1686 | 100 | 1.5047 | - | - | - | - | - | - |
| 0.1855 | 110 | 1.5764 | - | - | - | - | - | - |
| 0.2024 | 120 | 2.0667 | - | - | - | - | - | - |
| 0.2192 | 130 | 1.9632 | - | - | - | - | - | - |
| 0.2361 | 140 | 0.6082 | - | - | - | - | - | - |
| 0.2530 | 150 | 1.0892 | - | - | - | - | - | - |
| 0.2698 | 160 | 1.4455 | - | - | - | - | - | - |
| 0.2867 | 170 | 1.6741 | - | - | - | - | - | - |
| 0.3035 | 180 | 1.3283 | - | - | - | - | - | - |
| 0.3204 | 190 | 1.0791 | - | - | - | - | - | - |
| 0.3373 | 200 | 1.0939 | - | - | - | - | - | - |
| 0.3541 | 210 | 0.923 | - | - | - | - | - | - |
| 0.3710 | 220 | 0.5855 | - | - | - | - | - | - |
| 0.3879 | 230 | 0.8982 | - | - | - | - | - | - |
| 0.4047 | 240 | 0.8841 | - | - | - | - | - | - |
| 0.4216 | 250 | 0.9478 | - | - | - | - | - | - |
| 0.4384 | 260 | 1.5893 | - | - | - | - | - | - |
| 0.4553 | 270 | 1.2372 | - | - | - | - | - | - |
| 0.4722 | 280 | 0.9174 | - | - | - | - | - | - |
| 0.4890 | 290 | 0.6589 | - | - | - | - | - | - |
| 0.5059 | 300 | 0.98 | - | - | - | - | - | - |
| 0.5228 | 310 | 1.0765 | - | - | - | - | - | - |
| 0.5396 | 320 | 1.0838 | - | - | - | - | - | - |
| 0.5565 | 330 | 1.4062 | - | - | - | - | - | - |
| 0.5734 | 340 | 1.0347 | - | - | - | - | - | - |
| 0.5902 | 350 | 0.9098 | - | - | - | - | - | - |
| 0.6071 | 360 | 1.8553 | - | - | - | - | - | - |
| 0.6239 | 370 | 0.9615 | - | - | - | - | - | - |
| 0.6408 | 380 | 1.6353 | - | - | - | - | - | - |
| 0.6577 | 390 | 0.8521 | - | - | - | - | - | - |
| 0.6745 | 400 | 1.3464 | - | - | - | - | - | - |
| 0.6914 | 410 | 0.7428 | - | - | - | - | - | - |
| 0.7083 | 420 | 1.5889 | - | - | - | - | - | - |
| 0.7251 | 430 | 1.0916 | - | - | - | - | - | - |
| 0.7420 | 440 | 0.7608 | - | - | - | - | - | - |
| 0.7589 | 450 | 0.7987 | - | - | - | - | - | - |
| 0.7757 | 460 | 0.6777 | - | - | - | - | - | - |
| 0.7926 | 470 | 1.4708 | - | - | - | - | - | - |
| 0.8094 | 480 | 0.5794 | - | - | - | - | - | - |
| 0.8263 | 490 | 1.016 | - | - | - | - | - | - |
| 0.8432 | 500 | 0.6064 | - | - | - | - | - | - |
| 0.8600 | 510 | 0.828 | - | - | - | - | - | - |
| 0.8769 | 520 | 0.3055 | - | - | - | - | - | - |
| 0.8938 | 530 | 1.3419 | - | - | - | - | - | - |
| 0.9106 | 540 | 1.9443 | - | - | - | - | - | - |
| 0.9275 | 550 | 1.1958 | - | - | - | - | - | - |
| 0.9444 | 560 | 1.0707 | - | - | - | - | - | - |
| 0.9612 | 570 | 0.509 | - | - | - | - | - | - |
| 0.9781 | 580 | 1.1698 | - | - | - | - | - | - |
| 0.9949 | 590 | 0.58 | - | - | - | - | - | - |
| 1.0 | 593 | - | 0.7864 | 0.7830 | 0.7770 | 0.7631 | 0.7414 | 0.7046 |
| 1.0118 | 600 | 0.3053 | - | - | - | - | - | - |
| 1.0287 | 610 | 0.6652 | - | - | - | - | - | - |
| 1.0455 | 620 | 0.8645 | - | - | - | - | - | - |
| 1.0624 | 630 | 0.4758 | - | - | - | - | - | - |
| 1.0793 | 640 | 0.6793 | - | - | - | - | - | - |
| 1.0961 | 650 | 0.5269 | - | - | - | - | - | - |
| 1.1130 | 660 | 0.5493 | - | - | - | - | - | - |
| 1.1298 | 670 | 0.8714 | - | - | - | - | - | - |
| 1.1467 | 680 | 0.2095 | - | - | - | - | - | - |
| 1.1636 | 690 | 0.5681 | - | - | - | - | - | - |
| 1.1804 | 700 | 1.0656 | - | - | - | - | - | - |
| 1.1973 | 710 | 0.3448 | - | - | - | - | - | - |
| 1.2142 | 720 | 0.9805 | - | - | - | - | - | - |
| 1.2310 | 730 | 0.9345 | - | - | - | - | - | - |
| 1.2479 | 740 | 0.7285 | - | - | - | - | - | - |
| 1.2648 | 750 | 0.5815 | - | - | - | - | - | - |
| 1.2816 | 760 | 1.0547 | - | - | - | - | - | - |
| 1.2985 | 770 | 0.759 | - | - | - | - | - | - |
| 1.3153 | 780 | 0.9341 | - | - | - | - | - | - |
| 1.3322 | 790 | 0.6537 | - | - | - | - | - | - |
| 1.3491 | 800 | 0.7775 | - | - | - | - | - | - |
| 1.3659 | 810 | 0.7652 | - | - | - | - | - | - |
| 1.3828 | 820 | 0.3977 | - | - | - | - | - | - |
| 1.3997 | 830 | 1.1133 | - | - | - | - | - | - |
| 1.4165 | 840 | 0.5203 | - | - | - | - | - | - |
| 1.4334 | 850 | 0.2669 | - | - | - | - | - | - |
| 1.4503 | 860 | 0.9608 | - | - | - | - | - | - |
| 1.4671 | 870 | 0.4095 | - | - | - | - | - | - |
| 1.4840 | 880 | 0.8907 | - | - | - | - | - | - |
| 1.5008 | 890 | 0.5912 | - | - | - | - | - | - |
| 1.5177 | 900 | 0.6184 | - | - | - | - | - | - |
| 1.5346 | 910 | 0.5476 | - | - | - | - | - | - |
| 1.5514 | 920 | 0.4008 | - | - | - | - | - | - |
| 1.5683 | 930 | 0.2897 | - | - | - | - | - | - |
| 1.5852 | 940 | 0.4879 | - | - | - | - | - | - |
| 1.6020 | 950 | 0.3882 | - | - | - | - | - | - |
| 1.6189 | 960 | 0.6128 | - | - | - | - | - | - |
| 1.6358 | 970 | 0.5498 | - | - | - | - | - | - |
| 1.6526 | 980 | 0.4599 | - | - | - | - | - | - |
| 1.6695 | 990 | 0.8448 | - | - | - | - | - | - |
| 1.6863 | 1000 | 0.4084 | - | - | - | - | - | - |
| 1.7032 | 1010 | 0.2107 | - | - | - | - | - | - |
| 1.7201 | 1020 | 0.8027 | - | - | - | - | - | - |
| 1.7369 | 1030 | 0.8358 | - | - | - | - | - | - |
| 1.7538 | 1040 | 0.7824 | - | - | - | - | - | - |
| 1.7707 | 1050 | 0.3526 | - | - | - | - | - | - |
| 1.7875 | 1060 | 0.9841 | - | - | - | - | - | - |
| 1.8044 | 1070 | 0.588 | - | - | - | - | - | - |
| 1.8212 | 1080 | 0.551 | - | - | - | - | - | - |
| 1.8381 | 1090 | 0.1695 | - | - | - | - | - | - |
| 1.8550 | 1100 | 0.4445 | - | - | - | - | - | - |
| 1.8718 | 1110 | 0.7868 | - | - | - | - | - | - |
| 1.8887 | 1120 | 0.2798 | - | - | - | - | - | - |
| 1.9056 | 1130 | 0.8559 | - | - | - | - | - | - |
| 1.9224 | 1140 | 1.0843 | - | - | - | - | - | - |
| 1.9393 | 1150 | 0.3561 | - | - | - | - | - | - |
| 1.9562 | 1160 | 0.8827 | - | - | - | - | - | - |
| 1.9730 | 1170 | 0.6912 | - | - | - | - | - | - |
| 1.9899 | 1180 | 0.4215 | - | - | - | - | - | - |
| 2.0 | 1186 | - | 0.7821 | 0.7791 | 0.7753 | 0.7610 | 0.7562 | 0.7326 |
| 2.0067 | 1190 | 0.2097 | - | - | - | - | - | - |
| 2.0236 | 1200 | 0.2441 | - | - | - | - | - | - |
| 2.0405 | 1210 | 0.6279 | - | - | - | - | - | - |
| 2.0573 | 1220 | 0.2016 | - | - | - | - | - | - |
| 2.0742 | 1230 | 1.068 | - | - | - | - | - | - |
| 2.0911 | 1240 | 0.6641 | - | - | - | - | - | - |
| 2.1079 | 1250 | 0.0971 | - | - | - | - | - | - |
| 2.1248 | 1260 | 0.5854 | - | - | - | - | - | - |
| 2.1417 | 1270 | 1.0182 | - | - | - | - | - | - |
| 2.1585 | 1280 | 0.3596 | - | - | - | - | - | - |
| 2.1754 | 1290 | 0.6765 | - | - | - | - | - | - |
| 2.1922 | 1300 | 0.1574 | - | - | - | - | - | - |
| 2.2091 | 1310 | 0.2267 | - | - | - | - | - | - |
| 2.2260 | 1320 | 0.7106 | - | - | - | - | - | - |
| 2.2428 | 1330 | 0.2617 | - | - | - | - | - | - |
| 2.2597 | 1340 | 0.3977 | - | - | - | - | - | - |
| 2.2766 | 1350 | 1.0292 | - | - | - | - | - | - |
| 2.2934 | 1360 | 0.3401 | - | - | - | - | - | - |
| 2.3103 | 1370 | 0.3034 | - | - | - | - | - | - |
| 2.3272 | 1380 | 0.3307 | - | - | - | - | - | - |
| 2.3440 | 1390 | 0.6796 | - | - | - | - | - | - |
| 2.3609 | 1400 | 0.3568 | - | - | - | - | - | - |
| 2.3777 | 1410 | 0.0886 | - | - | - | - | - | - |
| 2.3946 | 1420 | 0.3308 | - | - | - | - | - | - |
| 2.4115 | 1430 | 0.5477 | - | - | - | - | - | - |
| 2.4283 | 1440 | 0.035 | - | - | - | - | - | - |
| 2.4452 | 1450 | 0.5458 | - | - | - | - | - | - |
| 2.4621 | 1460 | 0.118 | - | - | - | - | - | - |
| 2.4789 | 1470 | 0.6712 | - | - | - | - | - | - |
| 2.4958 | 1480 | 0.4372 | - | - | - | - | - | - |
| 2.5126 | 1490 | 0.1344 | - | - | - | - | - | - |
| 2.5295 | 1500 | 0.2819 | - | - | - | - | - | - |
| 2.5464 | 1510 | 0.1784 | - | - | - | - | - | - |
| 2.5632 | 1520 | 0.1045 | - | - | - | - | - | - |
| 2.5801 | 1530 | 0.3959 | - | - | - | - | - | - |
| 2.5970 | 1540 | 0.0537 | - | - | - | - | - | - |
| 2.6138 | 1550 | 0.2369 | - | - | - | - | - | - |
| 2.6307 | 1560 | 0.8336 | - | - | - | - | - | - |
| 2.6476 | 1570 | 0.2027 | - | - | - | - | - | - |
| 2.6644 | 1580 | 0.3074 | - | - | - | - | - | - |
| 2.6813 | 1590 | 0.1481 | - | - | - | - | - | - |
| 2.6981 | 1600 | 0.1564 | - | - | - | - | - | - |
| 2.7150 | 1610 | 0.5756 | - | - | - | - | - | - |
| 2.7319 | 1620 | 0.5477 | - | - | - | - | - | - |
| 2.7487 | 1630 | 0.1841 | - | - | - | - | - | - |
| 2.7656 | 1640 | 0.6235 | - | - | - | - | - | - |
| 2.7825 | 1650 | 0.0891 | - | - | - | - | - | - |
| 2.7993 | 1660 | 0.2754 | - | - | - | - | - | - |
| 2.8162 | 1670 | 0.2289 | - | - | - | - | - | - |
| 2.8331 | 1680 | 0.0992 | - | - | - | - | - | - |
| 2.8499 | 1690 | 0.3062 | - | - | - | - | - | - |
| 2.8668 | 1700 | 0.094 | - | - | - | - | - | - |
| 2.8836 | 1710 | 0.1212 | - | - | - | - | - | - |
| 2.9005 | 1720 | 0.1117 | - | - | - | - | - | - |
| 2.9174 | 1730 | 0.0695 | - | - | - | - | - | - |
| 2.9342 | 1740 | 0.2113 | - | - | - | - | - | - |
| 2.9511 | 1750 | 0.4381 | - | - | - | - | - | - |
| 2.9680 | 1760 | 0.5537 | - | - | - | - | - | - |
| 2.9848 | 1770 | 1.3753 | - | - | - | - | - | - |
| 3.0 | 1779 | - | 0.7922 | 0.7886 | 0.7856 | 0.7752 | 0.7656 | 0.7511 |
| 3.0017 | 1780 | 0.1847 | - | - | - | - | - | - |
| 3.0185 | 1790 | 0.3758 | - | - | - | - | - | - |
| 3.0354 | 1800 | 0.3809 | - | - | - | - | - | - |
| 3.0523 | 1810 | 0.2109 | - | - | - | - | - | - |
| 3.0691 | 1820 | 0.1206 | - | - | - | - | - | - |
| 3.0860 | 1830 | 0.2972 | - | - | - | - | - | - |
| 3.1029 | 1840 | 0.0778 | - | - | - | - | - | - |
| 3.1197 | 1850 | 0.0589 | - | - | - | - | - | - |
| 3.1366 | 1860 | 0.166 | - | - | - | - | - | - |
| 3.1535 | 1870 | 0.1946 | - | - | - | - | - | - |
| 3.1703 | 1880 | 0.2489 | - | - | - | - | - | - |
| 3.1872 | 1890 | 0.1384 | - | - | - | - | - | - |
| 3.2040 | 1900 | 0.07 | - | - | - | - | - | - |
| 3.2209 | 1910 | 0.5017 | - | - | - | - | - | - |
| 3.2378 | 1920 | 0.1851 | - | - | - | - | - | - |
| 3.2546 | 1930 | 0.1793 | - | - | - | - | - | - |
| 3.2715 | 1940 | 0.1809 | - | - | - | - | - | - |
| 3.2884 | 1950 | 0.4634 | - | - | - | - | - | - |
| 3.3052 | 1960 | 0.4031 | - | - | - | - | - | - |
| 3.3221 | 1970 | 0.3377 | - | - | - | - | - | - |
| 3.3390 | 1980 | 0.3894 | - | - | - | - | - | - |
| 3.3558 | 1990 | 0.2699 | - | - | - | - | - | - |
| 3.3727 | 2000 | 0.0361 | - | - | - | - | - | - |
| 3.3895 | 2010 | 0.0887 | - | - | - | - | - | - |
| 3.4064 | 2020 | 0.1028 | - | - | - | - | - | - |
| 3.4233 | 2030 | 0.3571 | - | - | - | - | - | - |
| 3.4401 | 2040 | 0.084 | - | - | - | - | - | - |
| 3.4570 | 2050 | 0.2129 | - | - | - | - | - | - |
| 3.4739 | 2060 | 0.3255 | - | - | - | - | - | - |
| 3.4907 | 2070 | 0.097 | - | - | - | - | - | - |
| 3.5076 | 2080 | 0.0376 | - | - | - | - | - | - |
| 3.5245 | 2090 | 0.1035 | - | - | - | - | - | - |
| 3.5413 | 2100 | 0.1985 | - | - | - | - | - | - |
| 3.5582 | 2110 | 0.0757 | - | - | - | - | - | - |
| 3.5750 | 2120 | 0.1875 | - | - | - | - | - | - |
| 3.5919 | 2130 | 0.2383 | - | - | - | - | - | - |
| 3.6088 | 2140 | 0.3408 | - | - | - | - | - | - |
| 3.6256 | 2150 | 0.1063 | - | - | - | - | - | - |
| 3.6425 | 2160 | 0.0859 | - | - | - | - | - | - |
| 3.6594 | 2170 | 0.1128 | - | - | - | - | - | - |
| 3.6762 | 2180 | 0.1582 | - | - | - | - | - | - |
| 3.6931 | 2190 | 0.5578 | - | - | - | - | - | - |
| 3.7099 | 2200 | 0.4277 | - | - | - | - | - | - |
| 3.7268 | 2210 | 0.1677 | - | - | - | - | - | - |
| 3.7437 | 2220 | 0.3124 | - | - | - | - | - | - |
| 3.7605 | 2230 | 0.4027 | - | - | - | - | - | - |
| 3.7774 | 2240 | 0.4156 | - | - | - | - | - | - |
| 3.7943 | 2250 | 0.6655 | - | - | - | - | - | - |
| 3.8111 | 2260 | 0.0406 | - | - | - | - | - | - |
| 3.8280 | 2270 | 0.0429 | - | - | - | - | - | - |
| 3.8449 | 2280 | 0.2318 | - | - | - | - | - | - |
| 3.8617 | 2290 | 0.2173 | - | - | - | - | - | - |
| 3.8786 | 2300 | 0.1336 | - | - | - | - | - | - |
| 3.8954 | 2310 | 0.1048 | - | - | - | - | - | - |
| 3.9123 | 2320 | 0.1166 | - | - | - | - | - | - |
| 3.9292 | 2330 | 0.6615 | - | - | - | - | - | - |
| 3.9460 | 2340 | 0.3252 | - | - | - | - | - | - |
| 3.9629 | 2350 | 0.1032 | - | - | - | - | - | - |
| 3.9798 | 2360 | 0.1283 | - | - | - | - | - | - |
| 3.9966 | 2370 | 0.2071 | - | - | - | - | - | - |
| **4.0** | **2372** | **-** | **0.7946** | **0.7933** | **0.7915** | **0.7779** | **0.7727** | **0.7555** |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |