File size: 93,831 Bytes
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
b151c48
 
74b25e7
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c246da1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b25e7
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b25e7
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c246da1
 
 
 
 
 
 
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
 
b151c48
c246da1
74b25e7
 
 
 
 
 
 
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
 
 
 
 
 
 
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
 
 
 
 
 
 
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
 
 
 
 
 
 
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
 
 
 
 
 
 
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
b151c48
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b151c48
 
 
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c246da1
74b25e7
 
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b151c48
 
 
 
74b25e7
b151c48
 
 
 
 
74b25e7
 
 
 
 
c246da1
74b25e7
 
 
 
 
 
 
 
 
 
 
c246da1
74b25e7
 
 
 
 
 
 
 
 
 
 
c246da1
74b25e7
 
 
c246da1
74b25e7
 
 
 
 
 
 
 
 
 
 
c246da1
 
74b25e7
 
 
 
 
 
 
 
 
 
 
c246da1
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c246da1
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c246da1
 
b151c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74b25e7
 
 
 
 
c246da1
 
74b25e7
c246da1
 
74b25e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
---
language:
- uz
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4737
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: Dam olish va ovqatlanish uchun tanaffusning davomiyligi qanday
    belgilangan?
  sentences:
  - "Ish kuni (smena) davomida xodimga dam olish va ovqatlanish uchun davomiyligi\
    \ ko‘pi bilan \nikki soat va kamida o‘ttiz daqiqa bo‘lgan, ish vaqtiga kiritilmaydigan\
    \ tanaffus berilishi kerak. Ichki \nmehnat tartibi qoidalarida yoki mehnat shartnomasida,\
    \ agar xodim uchun belgilangan kunlik ishning \n(smenaning) davomiyligi to‘rt\
    \ soatdan oshmasa, unga mazkur tanaffus berilmasligi nazarda tutilishi \nmumkin.\
    \ \nDam olish va ovqatlanish uchun tanaffus berish vaqti va uning aniq davomiyligi\
    \ ichki \nmehnat tartibi qoidalarida yoki xodim va ish beruvchi o‘rtasidagi kelishuvga\
    \ ko‘ra belgilanadi. Dam olish va ovqatlanish uchun tanaffus vaqti umuman barcha\
    \ xodimlar uchun yoki tarkibiy \nbo‘linmalar, brigadalar va xodimlarning ayrim\
    \ guruhlari uchun alohida belgilanishi mumkin. \nXodimlar dam olish va ovqatlanish\
    \ uchun tanaffusdan o‘z ixtiyor iga ko‘ra foydalanadi. Bu \nvaqtda ular ish joyidan\
    \ chiqib ketishi mumkin. \nAgar ish kunining (smenaning) davomiyligi sakkiz soatdan\
    \ oshgan hollarda xodimlar uchun \nish vaqtini jamlab hisobga olish belgilangan\
    \ bo‘lsa, xodimga dam olish va ovqatlanish uchun ikk ita \ntanaffus berilishi\
    \ kerak. \nIshlab chiqarish (ish) sharoitlariga ko‘ra dam olish va ovqatlanish\
    \ uchun tanaffus berish \nimkoni bo‘lmagan ishlarda ish beruvchi xodimga ish vaqtida\
    \ dam olish va ovqat yeyish imkoniyatini \nta’minlashi shart. Bunday ishlarning\
    \ r o‘yxati, shuningdek dam olish va ovqat yeyish uchun joylar \nichki mehnat\
    \ tartib qoidalari bilan belgilanadi. \nQonunchilikda, sanitariya normalari va\
    \ qoidalarida ayrim toifadagi xodimlarga dam olish va \novqatlanish uchun tanaffus\
    \ berishning o‘ziga xos xususiyatlari nazarda tutilishi mumkin."
  - "taqdirda, mehnat shartnom asining barcha nusxalarida mansabdor shaxsning imzosi\
    \ muhr bilan \ntasdiqlanadi. Qo‘shimcha kelishuvning bir nusxasi xodimga beriladi,\
    \ boshqasi (boshqalari) ish \nberuvchida mehnat shartnomasi bilan birga saqlanadi.\
    \ Xodim tomonidan qo‘shimcha kelishuvning \nnusxasi olinganligi xodimning ish\
    \ beruvchida saqlanadigan qo‘shimcha kelishuvning nusxasiga \nqo‘yilgan qo‘shimcha\
    \ imzosi bilan tasdiqlanadi. \nXodimni doimiy boshqa ishga o‘tkazish, mehnat shartnomasida\
    \ nazarda tutilgan mehnat \nshartlarini o‘zgartirish, shuningdek  mehnat shartnomasida\
    \ shart qilib ko‘rsatilgan ish joyini \no‘zgartirish to‘g‘risidagi buyruqlar mehnat\
    \ shartnomasi taraflari tomonidan qo‘shimcha kelishuv \ntuzish orqali ushbu shartnomaga\
    \ kiritilgan o‘zgartishlarning mazmuniga aynan muvofiq ravishda \nchiqariladi\
    \ va xodimga imzo qo‘ydirib e’lon qilinadi.  \nXodimni vaqtincha boshqa ishga\
    \ o‘tkazish o‘tkazishning muddati ko‘rsatilgan holda buyruq \nbilan rasmiylashtiriladi.\
    \ \nMehnat shartnomasi taraflarining kelishuviga ko‘ra va xodimning tashabbusi\
    \ bilan xodimni \nvaqtincha boshqa ishga o‘tkazish to‘g‘risida buyruq chiqarish\
    \ uchun xodimning yozma arizasi asos \nbo‘ladi.  \nXodim sog‘lig‘ining holatiga\
    \ ko‘ra xodimni vaqtincha boshqa ishga o‘tkazish, homilador \nayolni, shuningdek\
    \ ikki yoshga to‘lmagan bolasini parvarishlayotgan  ota-onadan birini (vasiyni)\
    \ \nularning avvalgi ishni bajarish imkoniyati bo‘lmagan taqdirda vaqtincha boshqa\
    \ ishga o‘tkazish \nhaqida buyruq chiqarish uchun ularning arizasi va tibbiy xulosa\
    \ asos bo‘ladi. \nIsh beruvchining tashabbusiga ko‘ra xodimni vaqtincha boshqa\
    \ ishga o‘tkazish to‘g‘risida \nbuyruq chiqarish uchun ishlab chiqarish zaruriyati\
    \ yoki bekor turib qolish faktlarining mavjudligi \nasos bo‘ladi. \nXodimni vaqtincha\
    \ boshqa ishga o‘tkazish mehnat shartnomasida aks ettirilmaydi."
  - "Ishlanmaydigan bayram kunlari arafasida har kunlik ishning (smenaning) davomiyligi\
    \ \nbarcha xodimlar uchun kamida bir soatga qisqartiriladi. \nBayramdan oldingi\
    \ kuni ishning (smenaning) davomiyligini qisqartirish imkoni bo‘lmagan \nuzluksiz\
    \ ishlaydigan tashkilotlarda va ayrim turdagi ishlarda ortiqcha ishlaganlik xodimga\
    \ \nqo‘shimcha dam olish vaqti berish yoki xodimning roziligi bilan ish vaqtidan\
    \ tashqari ish uchun \nbelgilangan normalar bo‘yicha haq to‘lash orqali kompensatsiya\
    \ qilinadi."
- source_sentence: Jamoaviy muzokaralar ishtirokchilari olingan ma’lumotlarni oshkor
    qilmasligi lozimligi haqida {chapter} va {section}da qanday ko‘rsatmalar berilgan?
  sentences:
  - "Vaqtincha mehnatga qobiliyatsizlik davri va xodim haqiqatda ishda bo‘lmagan \
    \ boshqa \ndavrlar dastlabki sinov muddatiga qo‘shilmaydi."
  - "Tashkilot rahbari, uning o‘rinbosarlari, tashkilot bosh buxgalteri va tashkilot\
    \ alohida \nbo‘linmasi rahbari tashkilotga o‘zi bevosita yetkazgan haqiqiy zarar\
    \ uchun to ‘liq moddiy javobgar \nbo‘ladi.  \nUshbu moddaning birinchi qismida\
    \ ko‘rsatilgan shaxslar aybli harakatlari (harakatsizligi) \ntufayli yetkazilgan\
    \ zararning o‘rnini tashkilot mulkdorining (aksiyadorlar, ishtirokchilar, muassislar\
    \ \numumiy yig‘ilishining) yoxud kuzatuv kengashining yoki mulkdor vakolat bergan\
    \ boshqa organning \ntalabiga binoan qoplaydi. Bunda zararlarni hisob -kitob qilish\
    \ fuqarolik to‘g‘risidagi qonunchilikda \nnazarda tutilgan normalarga muvofiq\
    \ amalga oshiriladi."
  - "Ijtimoiy sheriklikning har qanday tarafi jamoaviy muzokaralar tashabbuskori bo‘lishi\
    \ \nmumkin. \nAvvalgi jamoa kelishuvining, jamoa shartnomasining amal qilish muddati\
    \ tugaguniga qadar \nuch oy ichida yoki ushbu hujjatlarda belgilangan muddatlarda\
    \ ijtimoiy sheriklikning har qanday tarafi \nboshqa tarafga yangi jamoa kelishuvini,\
    \ jamoa shartnomasini tuzish yuzasidan muzokaralar boshlash \nto‘g‘risida yozma\
    \ xabar yuborishga haqlidir. \nIsh beruvchilarning manfaatlarini ifoda etuvchi\
    \ shaxslar, shuningdek ish beruvchilar, \nmahalliy ijro etuvchi hokimiyat organlari,\
    \ davlat boshqaruvi organlari, siyosiy partiyalar tashkil etgan \nyoki moliyalashtiradigan\
    \ tashkilotlar yoxud organlar tomonidan xo dimlar nomidan jamoaviy muzokaralar\
    \ olib borilishiga hamda jamoa kelishuvlari va jamoa shartnomasi tuzilishiga yo‘l\
    \ \nqo‘yilmaydi. \nIjtimoiy sheriklik taraflari tegishli so‘rov olingan kundan\
    \ e’tiboran ikki haftadan \nkechiktirmay jamoaviy muzokaralar olib borish uchun\
    \ zarur bo‘lgan o‘zidagi mavjud axborotni bir -\nbiriga taqdim etishi kerak. \n\
    Jamoaviy muzokaralar ishtirokchilari, jamoaviy muzokaralar olib borish bilan bog‘liq\
    \ \nbo‘lgan boshqa shaxslar olingan ma’lumotlarni, agar ushbu ma’lumotlar davlat\
    \ sirlariga yok i qonun \nbilan qo‘riqlanadigan boshqa sirga taalluqli bo‘lsa,\
    \ oshkor qilmasligi lozim."
- source_sentence: Mehnat shartnomasi bekor qilinganda xodimga berilishi kerak bo‘lgan
    summalar qanday muddatda to‘lanishi kerak?
  sentences:
  - "nafaqasi to‘lanadi. Agar ish beruvchi mehnatga qobiliyatsizlik varaqasida ko‘rsatilgan\
    \ muddatda \nboshqa ish topib berolmagan bo‘lsa, buning oqibatida bekor o‘tgan\
    \ kunlar uchun mazkur nafaqa \numumiy asoslarda to‘lanadi. \nMehnatda mayib bo‘lganligi\
    \ yoki i sh bilan bog‘liq holda sog‘lig‘iga boshqacha tarzda \nshikast yetkazilganligi\
    \ munosabati bilan vaqtincha kamroq haq to‘lanadigan ishga o‘tkazilgan \nxodimlarga\
    \ ularning sog‘lig‘i shikastlanganligi uchun javobgar bo‘lgan ish beruvchi avvalgi\
    \ ish haqi \nbilan yang i ishda oladigan ish haqi o‘rtasidagi farqni to‘laydi.\
    \ Bunday farq mehnat qobiliyati \ntiklanguniga qadar yoki nogironlik belgilanguniga\
    \ qadar to‘lanadi. \nQonunchilikda sog‘lig‘ining holatiga ko‘ra yengilroq yoki\
    \ noqulay ishlab chiqarish \nomillarining ta’siridan xoli bo‘lgan, kamroq haq\
    \ to‘lanadigan ishga o‘tkazilganda avvalgi o‘rtacha \nish haqini saqlab qolishning\
    \ yoki davlat ijtimoiy sug‘urtasi bo‘yicha nafaqa to‘lashning boshqa hollari \n\
    ham nazarda tutilishi mumkin."
  - "Mehnat shartnomasi bekor qilinganda ish beruvchidan xodimga berilishi kerak bo‘lgan\
    \ \nbarcha summalarni to‘lash xodim bilan tuzilgan mehnat shartnomasi bekor qilingan\
    \ kuni amalga \noshiriladi. Agar xodim mehnat shartnomasi bekor qilingan kuni\
    \ ishlamagan bo‘lsa, tegishli summalar \nushbu xodim tomonidan hisob -kitob qilish\
    \ to‘g‘risidagi talab taqdim etilganidan keyin uch kundan \nkechiktirmay to‘lanishi\
    \ kerak. \nMehnat shartnomasi bekor qilinganda xodimga tegishli bo‘lgan summalar\
    \ miqdorlari \nto‘g‘risida nizo chiqqan ta qdirda, ish beruvchi xodimga shak -shubhasiz\
    \ tegadigan summani ushbu \nmoddaning birinchi qismida ko‘rsatilgan muddatda to‘lashi\
    \ shart. \nIchki hujjatlarda nazarda tutilgan hollarda xodim, agar u hatto mukofot\
    \ to‘lanayotgan paytda \nyakka tartibdagi mehnatga oid munosabatlarda bo‘lmasa\
    \ ham, bir yildagi ish yakunlariga ko‘ra \nmukofot olish huquqiga ega bo‘ladi."
  - "Tashkilot rahbari, uning o‘rinbosarlari, tashkilot b osh buxgalteri va tashkilot\
    \ alohida \nbo‘linmasining rahbari bilan tashkilotning ta’sis hujjatlarida yoki\
    \ taraflarning kelishuvida \nbelgilangan muddatga muddatli mehnat shartnomasi\
    \ tuzilishi mumkin.  \nAksiyadorlik jamiyatining rahbari bilan qonunda belgilangan\
    \  muddatga muddatli mehnat \nshartnomasi tuziladi. \nQonunda va boshqa normativ-huquqiy\
    \ hujjatlarda, tashkilotning ta’sis hujjatlarida tashkilot \nrahbari bilan mehnat\
    \ shartnomasi tuzilishidan oldingi tartib -taomillar (tanlov o‘tkazish, lavozimga\
    \ \nsaylash yoki tayinlash va hokazo) belgilanishi mumkin.  \nTashkilot rahbarini,\
    \ uning o‘rinbosarlarini, tashkilot bosh buxgalterini va tashkilotning \nalohida\
    \ bo‘linmasi rahbarini ishga qabul qilish chog‘ida olti oygacha muddat bilan dastlabki\
    \ sinov \nbelgilanishi mumkin."
- source_sentence: Mehnat nizolarini hal etish jarayonida kimlar ishtirok etadi?
  sentences:
  - "Vaxta usulida ishlovchi shaxslarga yillik mehnat ta’tili ular vaxtalar oralig‘idagi\
    \ dam olish \nkunlaridan foydalanganidan keyin berilishi kerak. \nUshbu moddaning\
    \ birinchi qismidagi talab vaxta us ulida ishlovchi shaxslarning ta’tillar \n\
    jadvalini tuzish chog‘ida hisobga olinishi kerak. \nAgar vaxta usulida ishlovchi\
    \ shaxsning yillik mehnat ta’tilining tugashi vaxtalar oralig‘idagi \ndam olish\
    \ kunlariga to‘g‘ri kelsa, unda ish beruvchi xodimning roziligi bilan: \nvaxta\
    \ boshlanguniga qadar xodimni vaqtincha boshqa ishga o‘tkazishi; \nvaxta boshlanguniga\
    \ qadar xodimga ish haqi saqlanmagan holda ta’til berishi; \nxodimni vaxtaning\
    \ boshqa smenasiga o‘tkazishi mumkin."
  - "Mehnat to‘g‘risidagi qonunchilikni va mehnat haqidagi boshqa huquqiy hujjatlarni,\
    \ mehnat \nshartnomasini qo‘llash masalalari bo‘yicha yakka tartibdagi mehnat\
    \ nizolarini (da’vo xususiyatiga \nega yakka tartibdagi me hnat nizolari) ko‘rib\
    \ chiqish tartibi ushbu Kodeksda belgilanadi, sudlarda \nmehnat nizolari bo‘yicha\
    \ ishlarni ko‘rish tartibi esa bundan tashqari O‘zbekiston Respublikasining \n\
    Fuqarolik protsessual kodeksida belgilanadi.  Xodim uchun yangi mehnat shartlarini\
    \ belgilash yoki mavjud mehnat shartlarini o‘zgartirish \nto‘g‘risidagi yakka\
    \ tartibdagi mehnat nizolari (da’vosiz xususiyatga ega bo‘lgan yakka tartibdagi\
    \ \nmehnat nizolari) ish beruvchi va kasaba uyushmasi qo‘mitasi tomonidan hal\
    \ etiladi."
  - "Xodim ish jarayonida o‘z hayotiga va sog‘lig‘iga tahdid soladigan holatlar yuzaga\
    \ kelganligi \nto‘g‘risida ish beruvchini darhol xabardor qilib, o‘z hayotiga\
    \ va sog‘lig‘iga tahdid soluvchi holatlar \nbartaraf etilguniga qadar tegishli\
    \ ishni bajarishni rad etishga haqli. Ana shu davr mobaynida \nxodimning o‘rtacha\
    \ ish haqi saqlanadi. Agar xodimning hayotiga va sog‘lig‘iga xavf soladigan holatlar\
    \ yuzaga kelmaganligi \naniqlansa, ish beruvchi ushbu Kodeksning 302 — 311-moddalarida\
    \ belgilangan tartibda xodimga \nnisbatan xizmat tekshiruvi o‘tkazish tashabbusi\
    \ bilan chiqishga haqli."
- source_sentence: O‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan
    ota-onaga qanday qo‘shimcha kunlar beriladi, {chapter} va {section}da bu haqida
    nima yozilgan?
  sentences:
  - "Ish beruvchi bilan: \nmehnat shartnomasida shart qilib ko‘rsatilgan ishni bajarishning\
    \ butun vaqti davomida \nmasofadan turib ishlash to‘g‘risida nomuayyan muddatga\
    \ yoki muddatli mehnat shartnomasi; \nish beruvchining nazorati ostida bo‘lgan\
    \ statsionar ish joyidan tashqarida doimiy asosda \nishlash haqidagi shartni o‘z\
    \ ichiga olgan mehnat shartnomasiga doir qo‘shimcha kelishuv tuzgan \nshaxslarning\
    \ ishi doimiy asosda masofadan turib ishlashdir. \nVaqtincha masofadan turib ishlash\
    \ xodim tomonidan mehnat vazifasini uning roziligi bilan \nish beruvchining nazorati\
    \ ostida bo‘lgan statsionar ish joyidan tashqarida vaqtincha bajarilishini \n\
    nazarda tutuvchi ish rejimidir. Vaqtincha masofadan turib ishlashda mehnat shartnomasi\
    \ taraflarining \nroziligi bilan masofadan turib ishlash rejimining muddati shart\
    \ qilib ko‘rsatilgan bo‘lishi kerak. \nMasofadan turib ishlash rejimining muddati\
    \ quyidagilar vositasida aniqlanishi mumkin: kun, oy va boshqa muddatlarda masofadan\
    \ turib ishlashning umumiy muddati davomiyligini \nko‘rsatish; \nmasofadan turib\
    \ ishlash boshlanadigan va tugallanadigan kalendar sanani belgilash; \nyuz berishi\
    \ bilan masofadan turib ishlash rejimi muddati tugashiga olib keladigan hodisani\
    \ \naniqlash (epidemiya munosabati bilan joriy etilgan karantin choralarining\
    \ bekor qilinishi, tabiiy yoki \ntexnogen xususiyatga ega halokatlar, ishlab chiqarish\
    \ avariyasi oqibatlarining bartaraf etilishi va \nboshqalar). \nVaqtincha masofadan\
    \ turib ishlashga o‘tishning eng ko‘p muddati bir yildan oshmasligi \nkerak. \n\
    Vaqtincha masofadan turib ishlash mud dati tugagach, ish beruvchi xodim uchun\
    \ u \nmasofadan turib ishlash rejimiga o‘tguniga qadar ishlagan avvalgi ish rejimini\
    \ belgilashi shart. Agar \nmasofadan turib ishlashga o‘tish vaqtincha bo‘lgan\
    \ bo‘lsa, ish beruvchi xodimning o‘tkazilish \nmuddati tugashi bilan unga avvalgi\
    \ mehnat vazifasi bo‘yicha ishini ham berishi shart."
  - "Masofadan turib ishlovchi xodim bilan tuzilgan mehnat shartnomasi ushbu Kodeksda\
    \ \nbelgilangan asoslarga ko‘ra bekor qilinishi mumkin. \nAgar masofadan turib\
    \ ishlovchi xodimning ish beruvchining masofadan turib ishlash \nto‘g‘risidagi\
    \ mehnat shartnomasini bekor qilish to‘g‘risidagi buyrug‘i bilan tanishib chiqishi\
    \ elektron \nhujjat tarzida amalga oshirilsa, ish beruvchi masofadan turib ishlovchi\
    \ xodimga mazkur mehnat \nshartnomasi bekor qilingan kuni lozim darajada rasmiylashtirilgan\
    \ mehnat shartnomasini bekor qilish \nto‘g‘risidagi buyruqning ko‘chirma nusxasini\
    \ ma’lum qilinadigan buyurtma xat bilan pochta orqali \nqog‘ozda yuborishi shart.\
    \ \n4-§. Vaxta usulida ishlovchi shaxslarning mehnatini huquqiy jihatdan tartibga\
    \ solishning \no‘ziga xos xususiyatlari"
  - "Xodimga dam olish uchun emas, balki boshqa maqsadlarda beriladigan, xodimni mehnat\
    \ \nmajburiyatlarini bajarishdan ozod etish davrlari dam olish vaqtiga kirmaydi.\
    \ Bunday davrlar \njumlasiga quyidagilar kiradi:  \nmehnat shartnomasi ish beruvchining\
    \ tashabbusiga k o‘ra bekor qilinishi to‘g‘risidagi \nogohlantirish muddati davrida\
    \ xodimga ishga joylashish uchun beriladigan ishdan bo‘sh bo‘linadigan \nqo‘shimcha\
    \ kunlar; \no‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan\
    \ ota -onadan \nbiriga (ota -onaning o‘rnini bosuvchi shaxsga) beriladigan ishdan\
    \ bo‘sh bo‘linadigan qo‘shimcha \nkunlar; \nhomilador ayollarga beriladigan ishdan\
    \ bo‘sh bo‘linadigan kunlar; \ndonorlarning tibbiy tekshiruv kunida hamda qon\
    \ va uning tarkibiy qismlari topshiriladigan \nkunda ishdan ozod etilishi;  \n\
    ijtimoiy ta’tillar: homiladorlik va tug‘ish ta’tillari, bolani parvarishlash ta’tillari,\
    \ o‘quv \nta’tillari va ijodiy ta’tillar; \nxodim tomonidan davlat yoki jamoat\
    \ majburiyatlari bajariladigan davrlar; \nish beruvchining va mehnat jamoasining\
    \ m anfaatlarini ko‘zlab majburiyatlar bajariladigan \ndavrlar; \nxodimning vaqtincha\
    \ mehnatga qobiliyatsizlik davrlari; \nxodimga dam olish uchun emas, balki mehnat\
    \ to‘g‘risidagi qonunchilikda va mehnat \nhaqidagi boshqa huquqiy hujjatlarda\
    \ belgilangan o‘zga maqsadla rda beriladigan, xodimni mehnat \nmajburiyatlarini\
    \ bajarishdan ozod etishning boshqa davrlari."
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE m3 Uzbek Legal Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.6470588235294118
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8349146110056926
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8918406072106262
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9354838709677419
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6470588235294118
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27830487033523077
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17836812144212524
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09354838709677418
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6470588235294118
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8349146110056926
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8918406072106262
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9354838709677419
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7946291757471942
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7489232252040601
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7528153336142288
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.6432637571157496
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8368121442125237
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8956356736242884
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9335863377609108
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6432637571157496
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2789373814041745
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1791271347248577
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09335863377609109
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6432637571157496
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8368121442125237
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8956356736242884
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9335863377609108
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7932547875342137
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7475678443420375
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7515302024634125
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.6413662239089184
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8330170777988615
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8937381404174574
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9316888045540797
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6413662239089184
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27767235926628714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17874762808349146
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09316888045540797
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6413662239089184
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8330170777988615
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8937381404174574
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9316888045540797
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7914538299798937
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7458096141682476
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7496769641433116
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6204933586337761
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8216318785578748
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8842504743833017
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9259962049335864
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6204933586337761
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2738772928526249
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1768500948766603
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09259962049335864
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6204933586337761
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8216318785578748
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8842504743833017
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9259962049335864
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7779399930379503
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7296602511972529
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7337697408521
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6223908918406073
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8178368121442126
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671726755218216
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9184060721062619
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6223908918406073
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2726122707147375
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17343453510436432
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09184060721062619
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6223908918406073
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8178368121442126
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671726755218216
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9184060721062619
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7727418198937503
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7256528417818741
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7303101255877268
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.5939278937381404
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7950664136622391
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.857685009487666
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9146110056925996
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5939278937381404
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.265022137887413
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1715370018975332
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09146110056925996
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5939278937381404
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7950664136622391
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.857685009487666
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9146110056925996
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7555340391985981
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7042927923857711
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7088145188830932
      name: Cosine Map@100
---

# BGE m3 Uzbek Legal Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** uz
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("fitlemon/bge-m3-uz-legal-matryoshka")
# Run inference
sentences = [
    'O‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan ota-onaga qanday qo‘shimcha kunlar beriladi, {chapter} va {section}da bu haqida nima yozilgan?',
    'Xodimga dam olish uchun emas, balki boshqa maqsadlarda beriladigan, xodimni mehnat \nmajburiyatlarini bajarishdan ozod etish davrlari dam olish vaqtiga kirmaydi. Bunday davrlar \njumlasiga quyidagilar kiradi:  \nmehnat shartnomasi ish beruvchining tashabbusiga k o‘ra bekor qilinishi to‘g‘risidagi \nogohlantirish muddati davrida xodimga ishga joylashish uchun beriladigan ishdan bo‘sh bo‘linadigan \nqo‘shimcha kunlar; \no‘n olti yoshga to‘lguniga qadar nogironligi bo‘lgan bolani tarbiyalayotgan ota -onadan \nbiriga (ota -onaning o‘rnini bosuvchi shaxsga) beriladigan ishdan bo‘sh bo‘linadigan qo‘shimcha \nkunlar; \nhomilador ayollarga beriladigan ishdan bo‘sh bo‘linadigan kunlar; \ndonorlarning tibbiy tekshiruv kunida hamda qon va uning tarkibiy qismlari topshiriladigan \nkunda ishdan ozod etilishi;  \nijtimoiy ta’tillar: homiladorlik va tug‘ish ta’tillari, bolani parvarishlash ta’tillari, o‘quv \nta’tillari va ijodiy ta’tillar; \nxodim tomonidan davlat yoki jamoat majburiyatlari bajariladigan davrlar; \nish beruvchining va mehnat jamoasining m anfaatlarini ko‘zlab majburiyatlar bajariladigan \ndavrlar; \nxodimning vaqtincha mehnatga qobiliyatsizlik davrlari; \nxodimga dam olish uchun emas, balki mehnat to‘g‘risidagi qonunchilikda va mehnat \nhaqidagi boshqa huquqiy hujjatlarda belgilangan o‘zga maqsadla rda beriladigan, xodimni mehnat \nmajburiyatlarini bajarishdan ozod etishning boshqa davrlari.',
    'Masofadan turib ishlovchi xodim bilan tuzilgan mehnat shartnomasi ushbu Kodeksda \nbelgilangan asoslarga ko‘ra bekor qilinishi mumkin. \nAgar masofadan turib ishlovchi xodimning ish beruvchining masofadan turib ishlash \nto‘g‘risidagi mehnat shartnomasini bekor qilish to‘g‘risidagi buyrug‘i bilan tanishib chiqishi elektron \nhujjat tarzida amalga oshirilsa, ish beruvchi masofadan turib ishlovchi xodimga mazkur mehnat \nshartnomasi bekor qilingan kuni lozim darajada rasmiylashtirilgan mehnat shartnomasini bekor qilish \nto‘g‘risidagi buyruqning ko‘chirma nusxasini ma’lum qilinadigan buyurtma xat bilan pochta orqali \nqog‘ozda yuborishi shart. \n4-§. Vaxta usulida ishlovchi shaxslarning mehnatini huquqiy jihatdan tartibga solishning \no‘ziga xos xususiyatlari',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_1024`, `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_1024   | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.6471     | 0.6433     | 0.6414     | 0.6205     | 0.6224     | 0.5939     |
| cosine_accuracy@3   | 0.8349     | 0.8368     | 0.833      | 0.8216     | 0.8178     | 0.7951     |
| cosine_accuracy@5   | 0.8918     | 0.8956     | 0.8937     | 0.8843     | 0.8672     | 0.8577     |
| cosine_accuracy@10  | 0.9355     | 0.9336     | 0.9317     | 0.926      | 0.9184     | 0.9146     |
| cosine_precision@1  | 0.6471     | 0.6433     | 0.6414     | 0.6205     | 0.6224     | 0.5939     |
| cosine_precision@3  | 0.2783     | 0.2789     | 0.2777     | 0.2739     | 0.2726     | 0.265      |
| cosine_precision@5  | 0.1784     | 0.1791     | 0.1787     | 0.1769     | 0.1734     | 0.1715     |
| cosine_precision@10 | 0.0935     | 0.0934     | 0.0932     | 0.0926     | 0.0918     | 0.0915     |
| cosine_recall@1     | 0.6471     | 0.6433     | 0.6414     | 0.6205     | 0.6224     | 0.5939     |
| cosine_recall@3     | 0.8349     | 0.8368     | 0.833      | 0.8216     | 0.8178     | 0.7951     |
| cosine_recall@5     | 0.8918     | 0.8956     | 0.8937     | 0.8843     | 0.8672     | 0.8577     |
| cosine_recall@10    | 0.9355     | 0.9336     | 0.9317     | 0.926      | 0.9184     | 0.9146     |
| **cosine_ndcg@10**  | **0.7946** | **0.7933** | **0.7915** | **0.7779** | **0.7727** | **0.7555** |
| cosine_mrr@10       | 0.7489     | 0.7476     | 0.7458     | 0.7297     | 0.7257     | 0.7043     |
| cosine_map@100      | 0.7528     | 0.7515     | 0.7497     | 0.7338     | 0.7303     | 0.7088     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 4,737 training samples
* Columns: <code>question</code> and <code>chunk</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | chunk                                                                                |
  |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                               |
  | details | <ul><li>min: 9 tokens</li><li>mean: 22.45 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 268.97 tokens</li><li>max: 520 tokens</li></ul> |
* Samples:
  | question                                                                                                          | chunk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
  |:------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Ish beruvchi o‘rindoshlik asosida ishga qabul qilishda qanday hujjatlarni talab qilishga haqli emas?</code> | <code>Boshqa ish beruvchiga (asosiy ish joyidan tashqari) o‘rindoshlik asosida ishga kirayotgan <br>shaxslar quyidagilarni taqdim etishi shart: <br>pasportni yoxud uning o‘rnini bosuvchi hujjatni yoki identifikatsiya ID-kartasini; <br>asosiy ish joyidan O ‘zbekiston Respublikasi Bandlik va mehnat munosabatlari vazirligi <br>tomonidan tasdiqlanadigan shakl bo‘yicha ma’lumotnomani; <br>bajarilishi uchun qonunchilikka muvofiq faqat muayyan ish stajiga ega bo‘lgan shaxslar <br>qo‘yilishi mumkin bo‘lgan ishga o‘rindoshlik a sosida qabul qilishda asosiy ish joyidagi mehnat <br>daftarchasining tasdiqlangan ko‘chirma nusxasini yoki elektron mehnat daftarchasidan ko‘chirmani; <br>diplomni, guvohnomani (sertifikatni) yoki ta’lim to‘g‘risidagi yoki kasbiy tayyorgarlik <br>haqidagi boshqa hujjatni, agar bunday ish maxsus bilimlarni yoxud maxsus tayyorgarlikni talab qilsa;  <br>mehnat sharoitlari zararli va (yoki) xavfli bo‘lgan ishga qabul qilish chog‘ida asosiy ish <br>joyidan mehnatning xususiyati va shartlari to‘g‘risidagi olingan m...</code> |
  | <code>Yakka tartibdagi mehnatga oid munosabatlarni tartibga solishning asosiy jihatlari nimalardan iborat?</code> | <code>Yakka tartibdagi mehnatga oid munosabatlarni va ular bilan bevosita bog‘liq bo‘lgan <br>ijtimoiy munosabatlarni huquqiy jihatdan tartibga solishning asosiy prinsiplari quyidagilardan iborat: <br>mehnat huquqlarining tengligi, mehnat va mashg‘ulotlar sohasida kamsitishni taqiqlash; <br>mehnat erkinligi va majburiy mehnatni taqiqlash; <br>mehnat sohasidagi ijtimoiy sheriklik; <br>mehnat huquqlari ta’minlanishining va mehnat majburiyatlari bajarilishining <br>kafolatlanganligi; <br>xodimning huquqiy holati yomonlashishiga yo‘l qo‘yilmasligi.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
  | <code>Tashkilotning ta’sis hujjatlari ish beruvchining huquqlarini qanday ta'sir qiladi?</code>                   | <code>Ish beruvchi moddiy zarar yetkazilgan aniq sharoitlarni hisobga olgan holda zararni aybdor <br>xodimdan to‘liq yoki qisman undirishdan voz kechish huquq iga ega. Tashkilot mulkdori ish <br>beruvchining mazkur huquqini qonunchilikda, shuningdek tashkilotning ta’sis hujjatlarida nazarda <br>tutilgan hollarda cheklashi mumkin.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch   | Step     | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:--------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.0169  | 10       | 2.9869        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.0337  | 20       | 2.7979        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.0506  | 30       | 2.7458        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.0675  | 40       | 1.9948        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.0843  | 50       | 1.8067        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1012  | 60       | 1.6556        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1180  | 70       | 1.3729        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1349  | 80       | 1.9454        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1518  | 90       | 0.7781        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1686  | 100      | 1.5047        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.1855  | 110      | 1.5764        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2024  | 120      | 2.0667        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2192  | 130      | 1.9632        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2361  | 140      | 0.6082        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2530  | 150      | 1.0892        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2698  | 160      | 1.4455        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.2867  | 170      | 1.6741        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3035  | 180      | 1.3283        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3204  | 190      | 1.0791        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3373  | 200      | 1.0939        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3541  | 210      | 0.923         | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3710  | 220      | 0.5855        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.3879  | 230      | 0.8982        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4047  | 240      | 0.8841        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4216  | 250      | 0.9478        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4384  | 260      | 1.5893        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4553  | 270      | 1.2372        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4722  | 280      | 0.9174        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.4890  | 290      | 0.6589        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5059  | 300      | 0.98          | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5228  | 310      | 1.0765        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5396  | 320      | 1.0838        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5565  | 330      | 1.4062        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5734  | 340      | 1.0347        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.5902  | 350      | 0.9098        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6071  | 360      | 1.8553        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6239  | 370      | 0.9615        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6408  | 380      | 1.6353        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6577  | 390      | 0.8521        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6745  | 400      | 1.3464        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.6914  | 410      | 0.7428        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7083  | 420      | 1.5889        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7251  | 430      | 1.0916        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7420  | 440      | 0.7608        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7589  | 450      | 0.7987        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7757  | 460      | 0.6777        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.7926  | 470      | 1.4708        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8094  | 480      | 0.5794        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8263  | 490      | 1.016         | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8432  | 500      | 0.6064        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8600  | 510      | 0.828         | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8769  | 520      | 0.3055        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.8938  | 530      | 1.3419        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9106  | 540      | 1.9443        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9275  | 550      | 1.1958        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9444  | 560      | 1.0707        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9612  | 570      | 0.509         | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9781  | 580      | 1.1698        | -                       | -                      | -                      | -                      | -                      | -                     |
| 0.9949  | 590      | 0.58          | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0     | 593      | -             | 0.7864                  | 0.7830                 | 0.7770                 | 0.7631                 | 0.7414                 | 0.7046                |
| 1.0118  | 600      | 0.3053        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0287  | 610      | 0.6652        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0455  | 620      | 0.8645        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0624  | 630      | 0.4758        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0793  | 640      | 0.6793        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.0961  | 650      | 0.5269        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1130  | 660      | 0.5493        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1298  | 670      | 0.8714        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1467  | 680      | 0.2095        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1636  | 690      | 0.5681        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1804  | 700      | 1.0656        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.1973  | 710      | 0.3448        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2142  | 720      | 0.9805        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2310  | 730      | 0.9345        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2479  | 740      | 0.7285        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2648  | 750      | 0.5815        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2816  | 760      | 1.0547        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.2985  | 770      | 0.759         | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3153  | 780      | 0.9341        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3322  | 790      | 0.6537        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3491  | 800      | 0.7775        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3659  | 810      | 0.7652        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3828  | 820      | 0.3977        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.3997  | 830      | 1.1133        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.4165  | 840      | 0.5203        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.4334  | 850      | 0.2669        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.4503  | 860      | 0.9608        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.4671  | 870      | 0.4095        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.4840  | 880      | 0.8907        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5008  | 890      | 0.5912        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5177  | 900      | 0.6184        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5346  | 910      | 0.5476        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5514  | 920      | 0.4008        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5683  | 930      | 0.2897        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.5852  | 940      | 0.4879        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6020  | 950      | 0.3882        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6189  | 960      | 0.6128        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6358  | 970      | 0.5498        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6526  | 980      | 0.4599        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6695  | 990      | 0.8448        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.6863  | 1000     | 0.4084        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7032  | 1010     | 0.2107        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7201  | 1020     | 0.8027        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7369  | 1030     | 0.8358        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7538  | 1040     | 0.7824        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7707  | 1050     | 0.3526        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.7875  | 1060     | 0.9841        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8044  | 1070     | 0.588         | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8212  | 1080     | 0.551         | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8381  | 1090     | 0.1695        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8550  | 1100     | 0.4445        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8718  | 1110     | 0.7868        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.8887  | 1120     | 0.2798        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9056  | 1130     | 0.8559        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9224  | 1140     | 1.0843        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9393  | 1150     | 0.3561        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9562  | 1160     | 0.8827        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9730  | 1170     | 0.6912        | -                       | -                      | -                      | -                      | -                      | -                     |
| 1.9899  | 1180     | 0.4215        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0     | 1186     | -             | 0.7821                  | 0.7791                 | 0.7753                 | 0.7610                 | 0.7562                 | 0.7326                |
| 2.0067  | 1190     | 0.2097        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0236  | 1200     | 0.2441        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0405  | 1210     | 0.6279        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0573  | 1220     | 0.2016        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0742  | 1230     | 1.068         | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.0911  | 1240     | 0.6641        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1079  | 1250     | 0.0971        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1248  | 1260     | 0.5854        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1417  | 1270     | 1.0182        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1585  | 1280     | 0.3596        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1754  | 1290     | 0.6765        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.1922  | 1300     | 0.1574        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2091  | 1310     | 0.2267        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2260  | 1320     | 0.7106        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2428  | 1330     | 0.2617        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2597  | 1340     | 0.3977        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2766  | 1350     | 1.0292        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.2934  | 1360     | 0.3401        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3103  | 1370     | 0.3034        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3272  | 1380     | 0.3307        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3440  | 1390     | 0.6796        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3609  | 1400     | 0.3568        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3777  | 1410     | 0.0886        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.3946  | 1420     | 0.3308        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4115  | 1430     | 0.5477        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4283  | 1440     | 0.035         | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4452  | 1450     | 0.5458        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4621  | 1460     | 0.118         | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4789  | 1470     | 0.6712        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.4958  | 1480     | 0.4372        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5126  | 1490     | 0.1344        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5295  | 1500     | 0.2819        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5464  | 1510     | 0.1784        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5632  | 1520     | 0.1045        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5801  | 1530     | 0.3959        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.5970  | 1540     | 0.0537        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6138  | 1550     | 0.2369        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6307  | 1560     | 0.8336        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6476  | 1570     | 0.2027        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6644  | 1580     | 0.3074        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6813  | 1590     | 0.1481        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.6981  | 1600     | 0.1564        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7150  | 1610     | 0.5756        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7319  | 1620     | 0.5477        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7487  | 1630     | 0.1841        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7656  | 1640     | 0.6235        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7825  | 1650     | 0.0891        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.7993  | 1660     | 0.2754        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.8162  | 1670     | 0.2289        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.8331  | 1680     | 0.0992        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.8499  | 1690     | 0.3062        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.8668  | 1700     | 0.094         | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.8836  | 1710     | 0.1212        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9005  | 1720     | 0.1117        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9174  | 1730     | 0.0695        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9342  | 1740     | 0.2113        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9511  | 1750     | 0.4381        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9680  | 1760     | 0.5537        | -                       | -                      | -                      | -                      | -                      | -                     |
| 2.9848  | 1770     | 1.3753        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0     | 1779     | -             | 0.7922                  | 0.7886                 | 0.7856                 | 0.7752                 | 0.7656                 | 0.7511                |
| 3.0017  | 1780     | 0.1847        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0185  | 1790     | 0.3758        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0354  | 1800     | 0.3809        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0523  | 1810     | 0.2109        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0691  | 1820     | 0.1206        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.0860  | 1830     | 0.2972        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1029  | 1840     | 0.0778        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1197  | 1850     | 0.0589        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1366  | 1860     | 0.166         | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1535  | 1870     | 0.1946        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1703  | 1880     | 0.2489        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.1872  | 1890     | 0.1384        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2040  | 1900     | 0.07          | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2209  | 1910     | 0.5017        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2378  | 1920     | 0.1851        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2546  | 1930     | 0.1793        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2715  | 1940     | 0.1809        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.2884  | 1950     | 0.4634        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3052  | 1960     | 0.4031        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3221  | 1970     | 0.3377        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3390  | 1980     | 0.3894        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3558  | 1990     | 0.2699        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3727  | 2000     | 0.0361        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.3895  | 2010     | 0.0887        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4064  | 2020     | 0.1028        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4233  | 2030     | 0.3571        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4401  | 2040     | 0.084         | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4570  | 2050     | 0.2129        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4739  | 2060     | 0.3255        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.4907  | 2070     | 0.097         | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5076  | 2080     | 0.0376        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5245  | 2090     | 0.1035        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5413  | 2100     | 0.1985        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5582  | 2110     | 0.0757        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5750  | 2120     | 0.1875        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.5919  | 2130     | 0.2383        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6088  | 2140     | 0.3408        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6256  | 2150     | 0.1063        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6425  | 2160     | 0.0859        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6594  | 2170     | 0.1128        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6762  | 2180     | 0.1582        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.6931  | 2190     | 0.5578        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7099  | 2200     | 0.4277        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7268  | 2210     | 0.1677        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7437  | 2220     | 0.3124        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7605  | 2230     | 0.4027        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7774  | 2240     | 0.4156        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.7943  | 2250     | 0.6655        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8111  | 2260     | 0.0406        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8280  | 2270     | 0.0429        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8449  | 2280     | 0.2318        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8617  | 2290     | 0.2173        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8786  | 2300     | 0.1336        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.8954  | 2310     | 0.1048        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9123  | 2320     | 0.1166        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9292  | 2330     | 0.6615        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9460  | 2340     | 0.3252        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9629  | 2350     | 0.1032        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9798  | 2360     | 0.1283        | -                       | -                      | -                      | -                      | -                      | -                     |
| 3.9966  | 2370     | 0.2071        | -                       | -                      | -                      | -                      | -                      | -                     |
| **4.0** | **2372** | **-**         | **0.7946**              | **0.7933**             | **0.7915**             | **0.7779**             | **0.7727**             | **0.7555**            |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->