Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,62 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-sa-4.0
|
| 3 |
pipeline_tag: feature-extraction
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
pipeline_tag: feature-extraction
|
| 3 |
+
tags:
|
| 4 |
+
- feature-extraction
|
| 5 |
+
- transformers
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
language:
|
| 8 |
+
- id
|
| 9 |
+
metrics:
|
| 10 |
+
- accuracy
|
| 11 |
+
- f1
|
| 12 |
+
- precision
|
| 13 |
+
- recall
|
| 14 |
+
datasets:
|
| 15 |
+
- squad_v2
|
| 16 |
+
---
|
| 17 |
+
### indo-dpr-question_encoder-single-squad-base
|
| 18 |
+
<p style="font-size:16px">Indonesian Dense Passage Retrieval trained on translated SQuADv2.0 dataset in DPR format.</p>
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
### Evaluation
|
| 22 |
+
|
| 23 |
+
| Class | Precision | Recall | F1-Score | Support |
|
| 24 |
+
|-------|-----------|--------|----------|---------|
|
| 25 |
+
| hard_negative | 0.9963 | 0.9963 | 0.9963 | 183090 |
|
| 26 |
+
| positive | 0.8849 | 0.8849 | 0.8849 | 5910 |
|
| 27 |
+
|
| 28 |
+
| Metric | Value |
|
| 29 |
+
|--------|-------|
|
| 30 |
+
| Accuracy | 0.9928 |
|
| 31 |
+
| Macro Average | 0.9406 |
|
| 32 |
+
| Weighted Average | 0.9928 |
|
| 33 |
+
|
| 34 |
+
<p style="font-size:16px">Note: This report is for evaluation on the dev set, after 12000 batches.</p>
|
| 35 |
+
|
| 36 |
+
### Usage
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
|
| 40 |
+
|
| 41 |
+
tokenizer = DPRContextEncoderTokenizer.from_pretrained('firqaaa/indo-dpr-ctx_encoder-single-squad-base')
|
| 42 |
+
model = DPRContextEncoder.from_pretrained('firqaaa/indo-dpr-ctx_encoder-single-squad-base')
|
| 43 |
+
input_ids = tokenizer("Ibukota Indonesia terletak dimana?", return_tensors='pt')["input_ids"]
|
| 44 |
+
embeddings = model(input_ids).pooler_output
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
You can use it using `haystack` as follows:
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
from haystack.nodes import DensePassageRetriever
|
| 51 |
+
from haystack.document_stores import InMemoryDocumentStore
|
| 52 |
+
|
| 53 |
+
retriever = DensePassageRetriever(document_store=InMemoryDocumentStore(),
|
| 54 |
+
query_embedding_model="firqaaa/indo-dpr-ctx_encoder-single-squad-base",
|
| 55 |
+
passage_embedding_model="firqaaa/indo-dpr-ctx_encoder-single-squad-base",
|
| 56 |
+
max_seq_len_query=64,
|
| 57 |
+
max_seq_len_passage=256,
|
| 58 |
+
batch_size=16,
|
| 59 |
+
use_gpu=True,
|
| 60 |
+
embed_title=True,
|
| 61 |
+
use_fast_tokenizers=True)
|
| 62 |
+
```
|