Upload DQN LunarLander-v3 trained agent
Browse files- DQN-LunarLander-v3.zip +3 -0
- DQN-LunarLander-v3/_stable_baselines3_version +1 -0
- DQN-LunarLander-v3/data +113 -0
- DQN-LunarLander-v3/policy.optimizer.pth +3 -0
- DQN-LunarLander-v3/policy.pth +3 -0
- DQN-LunarLander-v3/pytorch_variables.pth +3 -0
- DQN-LunarLander-v3/system_info.txt +8 -0
- README.md +37 -0
- config.json +1 -0
- results.json +1 -0
DQN-LunarLander-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d103d7316571d359e852bfada78bc5bc533e7fd9bbbeb631a57d6937033dc77
|
3 |
+
size 570725
|
DQN-LunarLander-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.6.0a2
|
DQN-LunarLander-v3/data
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x000001FB619A8E00>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x000001FB619A8EA0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x000001FB619A8F40>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x000001FB619A8FE0>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x000001FB619A9080>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001FB619A9120>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001FB619A91C0>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001FB619B47C0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
256,
|
22 |
+
256
|
23 |
+
]
|
24 |
+
},
|
25 |
+
"num_timesteps": 0,
|
26 |
+
"_total_timesteps": 0,
|
27 |
+
"_num_timesteps_at_start": 0,
|
28 |
+
"seed": null,
|
29 |
+
"action_noise": null,
|
30 |
+
"start_time": 0.0,
|
31 |
+
"learning_rate": 0.0005,
|
32 |
+
"tensorboard_log": null,
|
33 |
+
"_last_obs": null,
|
34 |
+
"_last_episode_starts": null,
|
35 |
+
"_last_original_obs": null,
|
36 |
+
"_episode_num": 0,
|
37 |
+
"use_sde": false,
|
38 |
+
"sde_sample_freq": -1,
|
39 |
+
"_current_progress_remaining": 1.0,
|
40 |
+
"_stats_window_size": 100,
|
41 |
+
"ep_info_buffer": null,
|
42 |
+
"ep_success_buffer": null,
|
43 |
+
"_n_updates": 0,
|
44 |
+
"buffer_size": 50000,
|
45 |
+
"batch_size": 128,
|
46 |
+
"learning_starts": 0,
|
47 |
+
"tau": 1.0,
|
48 |
+
"gamma": 0.99,
|
49 |
+
"gradient_steps": 1,
|
50 |
+
"optimize_memory_usage": false,
|
51 |
+
"replay_buffer_class": {
|
52 |
+
":type:": "<class 'abc.ABCMeta'>",
|
53 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
54 |
+
"__module__": "stable_baselines3.common.buffers",
|
55 |
+
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
56 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
57 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x000001FB618ABCE0>",
|
58 |
+
"add": "<function ReplayBuffer.add at 0x000001FB618ABE20>",
|
59 |
+
"sample": "<function ReplayBuffer.sample at 0x000001FB618ABEC0>",
|
60 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x000001FB618ABF60>",
|
61 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x000001FB618BC040>)>",
|
62 |
+
"__abstractmethods__": "frozenset()",
|
63 |
+
"_abc_impl": "<_abc._abc_data object at 0x000001FB618B0E40>"
|
64 |
+
},
|
65 |
+
"replay_buffer_kwargs": {},
|
66 |
+
"train_freq": {
|
67 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
68 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
69 |
+
},
|
70 |
+
"use_sde_at_warmup": false,
|
71 |
+
"exploration_initial_eps": 1.0,
|
72 |
+
"exploration_final_eps": 0.05,
|
73 |
+
"exploration_fraction": 0.1,
|
74 |
+
"target_update_interval": 250,
|
75 |
+
"_n_calls": 0,
|
76 |
+
"max_grad_norm": 10,
|
77 |
+
"exploration_rate": 0.0,
|
78 |
+
"observation_space": {
|
79 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
80 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
81 |
+
"dtype": "float32",
|
82 |
+
"_shape": [
|
83 |
+
8
|
84 |
+
],
|
85 |
+
"low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
|
86 |
+
"bounded_below": "[ True True True True True True True True]",
|
87 |
+
"high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
|
88 |
+
"bounded_above": "[ True True True True True True True True]",
|
89 |
+
"low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]",
|
90 |
+
"high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
95 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"n": "4",
|
97 |
+
"start": "0",
|
98 |
+
"_shape": [],
|
99 |
+
"dtype": "int64",
|
100 |
+
"_np_random": null
|
101 |
+
},
|
102 |
+
"n_envs": 1,
|
103 |
+
"lr_schedule": {
|
104 |
+
":type:": "<class 'function'>",
|
105 |
+
":serialized:": "gAWVtwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMQGQ6XFB5dGhvbjMxMlxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYkMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgajAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBuMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDCJUBlwCJAVMAlGgJKYwBX5SFlGgOjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhkMI+IAA2A8SiAqUaBKMA3ZhbJSFlCl0lFKUaBdOTmgeKVKUhZR0lFKUaCRoQH2UfZQoaBqMBGZ1bmOUaCiMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCp9lGgsTmgtTmguaBtoL05oMGgyRz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoSV2UaEt9lHWGlIZSMC4="
|
106 |
+
},
|
107 |
+
"batch_norm_stats": [],
|
108 |
+
"batch_norm_stats_target": [],
|
109 |
+
"exploration_schedule": {
|
110 |
+
":type:": "<class 'function'>",
|
111 |
+
":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQzqVA5cAZAF8AHoKAACJAmtEAAByAokBUwCJA2QBfAB6CgAAiQGJA3oKAAB6BQAAiQJ6CwAAegAAAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEBkOlxQeXRob24zMTJcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5RLdEM1+IAA2AwN0BAi0QwioGzSCzLYExaISuATGJhB0CAy0RwysHO4VbF70RtDwGzRG1LRE1LQDFKUQwCUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgeKVKUaB4pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgajARmdW5jlIwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaDB1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoOEc/uZmZmZmZmoWUUpRoOEc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
112 |
+
}
|
113 |
+
}
|
DQN-LunarLander-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b99859e1582b39fec516a653abe941129f06855d78962901d92572ff140a5c51
|
3 |
+
size 1120
|
DQN-LunarLander-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37fc16939a2070a52f237b6c2faa561135bc9ff7250616b1e6af8cebbe9e14ad
|
3 |
+
size 557490
|
DQN-LunarLander-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
|
3 |
+
size 864
|
DQN-LunarLander-v3/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-11-10.0.26100-SP0 10.0.26100
|
2 |
+
- Python: 3.12.4
|
3 |
+
- Stable-Baselines3: 2.6.0a2
|
4 |
+
- PyTorch: 2.6.0+cu126
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 1.0.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v3
|
16 |
+
type: LunarLander-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1080.50 +/- 1050.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **LunarLander-v3**
|
25 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x000001FB619A8E00>", "_build": "<function DQNPolicy._build at 0x000001FB619A8EA0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x000001FB619A8F40>", "forward": "<function DQNPolicy.forward at 0x000001FB619A8FE0>", "_predict": "<function DQNPolicy._predict at 0x000001FB619A9080>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001FB619A9120>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001FB619A91C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001FB619B47C0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 0.0, "learning_rate": 0.0005, "tensorboard_log": null, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1.0, "_stats_window_size": 100, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "buffer_size": 50000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x000001FB618ABCE0>", "add": "<function ReplayBuffer.add at 0x000001FB618ABE20>", "sample": "<function ReplayBuffer.sample at 0x000001FB618ABEC0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x000001FB618ABF60>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x000001FB618BC040>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001FB618B0E40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 250, "_n_calls": 0, "max_grad_norm": 10, "exploration_rate": 0.0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAACDAAAAgwAAAIMEAACDB2w/JwAAAIMEAAACAAAAAgJRoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAAAgQAAAIEAAACBBAAAgQdsPyUAAACBBAACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjFtbIC0yLjUgICAgICAgIC0yLjUgICAgICAgLTEwLiAgICAgICAgLTEwLiAgICAgICAgIC02LjI4MzE4NTUgLTEwLgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWyAyLjUgICAgICAgIDIuNSAgICAgICAxMC4gICAgICAgIDEwLiAgICAgICAgIDYuMjgzMTg1NSAxMC4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [8], "low": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "bounded_below": "[ True True True True True True True True]", "high": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "bounded_above": "[ True True True True True True True True]", "low_repr": "[ -2.5 -2.5 -10. -10. -6.2831855 -10.\n -0. -0. ]", "high_repr": "[ 2.5 2.5 10. 10. 6.2831855 10.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVtwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMQGQ6XFB5dGhvbjMxMlxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpSMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpRLYkMS+IAApGWpTtA7TdMsTtMmT4AAlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgajAg8bGFtYmRhPpSMDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBuMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDCJUBlwCJAVMAlGgJKYwBX5SFlGgOjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhkMI+IAA2A8SiAqUaBKMA3ZhbJSFlCl0lFKUaBdOTmgeKVKUhZR0lFKUaCRoQH2UfZQoaBqMBGZ1bmOUaCiMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCp9lGgsTmgtTmguaBtoL05oMGgyRz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoSV2UaEt9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQzqVA5cAZAF8AHoKAACJAmtEAAByAokBUwCJA2QBfAB6CgAAiQGJA3oKAAB6BQAAiQJ6CwAAegAAAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEBkOlxQeXRob24zMTJcTGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5RLdEM1+IAA2AwN0BAi0QwioGzSCzLYExaISuATGJhB0CAy0RwysHO4VbF70RtDwGzRG1LRE1LQDFKUQwCUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgeKVKUaB4pUpSHlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgajARmdW5jlIwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaDB1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoG4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoOEc/uZmZmZmZmoWUUpRoOEc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Windows-11-10.0.26100-SP0 10.0.26100", "Python": "3.12.4", "Stable-Baselines3": "2.6.0a2", "PyTorch": "2.6.0+cu126", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "1.0.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1080.4997514000002, "std_reward": 1050.261852668368, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-11T00:39:46.849741"}
|