--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5916 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 1.9043 | 1.0 | 113 | 0.46 | 1.8057 | | 1.2603 | 2.0 | 226 | 0.58 | 1.3549 | | 1.1442 | 3.0 | 339 | 0.68 | 1.0001 | | 0.6053 | 4.0 | 452 | 0.68 | 0.9841 | | 0.5621 | 5.0 | 565 | 0.69 | 0.9519 | | 0.541 | 6.0 | 678 | 0.79 | 0.6576 | | 0.3868 | 7.0 | 791 | 0.86 | 0.4867 | | 0.1518 | 8.0 | 904 | 0.84 | 0.5443 | | 0.1699 | 9.0 | 1017 | 0.91 | 0.4024 | | 0.0798 | 10.0 | 1130 | 0.5878 | 0.86 | | 0.1869 | 11.0 | 1243 | 0.6483 | 0.86 | | 0.1439 | 12.0 | 1356 | 0.5916 | 0.87 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0