--- library_name: peft license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - axolotl - generated_from_trainer model-index: - name: d923409a-51c6-4207-8008-3c07906569e9 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: codellama/CodeLlama-7b-hf bf16: true chat_template: llama3 data_processes: 8 dataset_prepared_path: null datasets: - data_files: - f6b98c81056863ed_train_data.json ds_type: json format: custom path: /workspace/input_data/f6b98c81056863ed_train_data.json type: field_instruction: related_work field_output: abstract format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: fedovtt/d923409a-51c6-4207-8008-3c07906569e9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.019e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 64 lora_dropout: 0.03 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: linear max_grad_norm: 1.0 max_steps: 200 micro_batch_size: 6 mlflow_experiment_name: /tmp/G.O.D/f6b98c81056863ed_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 9c43eb5e-5f27-4f76-bcce-a2419144bfc6 wandb_project: cold5 wandb_run: your_name wandb_runid: 9c43eb5e-5f27-4f76-bcce-a2419144bfc6 warmup_steps: 20 weight_decay: 0.0 xformers_attention: null ```

# d923409a-51c6-4207-8008-3c07906569e9 This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.3090 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.019e-05 - train_batch_size: 6 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0002 | 1 | 2.3789 | | 2.3985 | 0.0078 | 50 | 2.3422 | | 2.3734 | 0.0156 | 100 | 2.3168 | | 2.3761 | 0.0234 | 150 | 2.3113 | | 2.4146 | 0.0312 | 200 | 2.3090 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1