File size: 1,157 Bytes
ae0228d e7656af ae0228d e7656af ae0228d e7656af ae0228d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
from typing import Dict, List, Any
from PIL import Image
from io import BytesIO
from transformers import pipeline
import base64
class EndpointHandler():
def __init__(self, path=""):
self.pipeline=pipeline("zero-shot-image-classification",model="openai/clip-vit-large-patch14-336")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
image (:obj:`string`)
parameters (:obj:)
Return:
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
"""
#inputs = data.pop("inputs", data)
#image_data = inputs['image']
image_data = data.pop("image", data)
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(image_data)))
parameters = data.pop("parameters", data)
#parameters = inputs['parameters']
candidate_labels = parameters['candidate_labels']
# run prediction one image wit provided candiates
prediction = self.pipeline(images=[image], candidate_labels=candidate_labels)
return prediction[0] |