Upload UltravoxPipeline
Browse files- config.json +18 -0
- ultravox_pipeline.py +111 -0
config.json
CHANGED
@@ -25,6 +25,24 @@
|
|
25 |
]
|
26 |
},
|
27 |
"audio_token_index": 32000,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"hidden_size": 4096,
|
29 |
"ignore_index": -100,
|
30 |
"initializer_range": 0.02,
|
|
|
25 |
]
|
26 |
},
|
27 |
"audio_token_index": 32000,
|
28 |
+
"custom_pipelines": {
|
29 |
+
"ultravox-pipeline": {
|
30 |
+
"default": {
|
31 |
+
"model": {
|
32 |
+
"pt": [
|
33 |
+
"fixie-ai/ultravox-v0.2",
|
34 |
+
"main"
|
35 |
+
]
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"impl": "ultravox_pipeline.UltravoxPipeline",
|
39 |
+
"pt": [
|
40 |
+
"UltravoxModel"
|
41 |
+
],
|
42 |
+
"tf": [],
|
43 |
+
"type": "multimodal"
|
44 |
+
}
|
45 |
+
},
|
46 |
"hidden_size": 4096,
|
47 |
"ignore_index": -100,
|
48 |
"initializer_range": 0.02,
|
ultravox_pipeline.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Any, Dict, List, Optional
|
3 |
+
|
4 |
+
import transformers
|
5 |
+
|
6 |
+
# We must use relative import in this directory to allow uploading to HF Hub
|
7 |
+
from . import ultravox_model
|
8 |
+
from . import ultravox_processing
|
9 |
+
|
10 |
+
|
11 |
+
class UltravoxPipeline(transformers.Pipeline):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
model: ultravox_model.UltravoxModel,
|
15 |
+
tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
|
16 |
+
audio_processor: Optional[transformers.ProcessorMixin] = None,
|
17 |
+
**kwargs
|
18 |
+
):
|
19 |
+
if tokenizer is None:
|
20 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
21 |
+
model.config._name_or_path
|
22 |
+
)
|
23 |
+
|
24 |
+
if audio_processor is None:
|
25 |
+
audio_processor = transformers.Wav2Vec2Processor.from_pretrained(
|
26 |
+
model.config.audio_model_id
|
27 |
+
)
|
28 |
+
|
29 |
+
self.processor = ultravox_processing.UltravoxProcessor(
|
30 |
+
audio_processor, tokenizer=tokenizer, stack_factor=model.config.stack_factor
|
31 |
+
)
|
32 |
+
|
33 |
+
super().__init__(model=model, tokenizer=tokenizer, **kwargs)
|
34 |
+
|
35 |
+
def _sanitize_parameters(self, **kwargs):
|
36 |
+
generation_kwargs = {}
|
37 |
+
if "temperature" in kwargs:
|
38 |
+
generation_kwargs["temperature"] = kwargs["temperature"]
|
39 |
+
if "max_new_tokens" in kwargs:
|
40 |
+
generation_kwargs["max_new_tokens"] = kwargs["max_new_tokens"]
|
41 |
+
if "repetition_penalty" in kwargs:
|
42 |
+
generation_kwargs["repetition_penalty"] = kwargs["repetition_penalty"]
|
43 |
+
return {}, generation_kwargs, {}
|
44 |
+
|
45 |
+
def preprocess(self, inputs: Dict[str, Any]):
|
46 |
+
if "turns" in inputs:
|
47 |
+
turns = inputs["turns"]
|
48 |
+
else:
|
49 |
+
prompt = inputs.get("prompt", "<|audio|>")
|
50 |
+
if "<|audio|>" not in prompt:
|
51 |
+
logging.warning(
|
52 |
+
"Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
|
53 |
+
)
|
54 |
+
prompt += " <|audio|>"
|
55 |
+
turns = [{"role": "user", "content": prompt}]
|
56 |
+
|
57 |
+
text = self.processor.tokenizer.apply_chat_template(turns, tokenize=False)
|
58 |
+
|
59 |
+
# TODO: allow text-only mode?
|
60 |
+
assert "audio" in inputs, "Audio input is required"
|
61 |
+
|
62 |
+
if "sampling_rate" not in inputs:
|
63 |
+
logging.warning(
|
64 |
+
"No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
|
65 |
+
)
|
66 |
+
|
67 |
+
return self.processor(
|
68 |
+
text=text,
|
69 |
+
audio=inputs["audio"],
|
70 |
+
sampling_rate=inputs.get("sampling_rate", 16000),
|
71 |
+
)
|
72 |
+
|
73 |
+
def _forward(
|
74 |
+
self,
|
75 |
+
model_inputs: Dict[str, Any],
|
76 |
+
temperature: Optional[float] = None,
|
77 |
+
max_new_tokens: Optional[int] = None,
|
78 |
+
repetition_penalty: float = 1.1,
|
79 |
+
) -> List[int]:
|
80 |
+
temperature = temperature or None
|
81 |
+
do_sample = temperature is not None
|
82 |
+
|
83 |
+
terminators = [self.tokenizer.eos_token_id]
|
84 |
+
if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
|
85 |
+
terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
|
86 |
+
|
87 |
+
input_len = model_inputs["input_ids"].shape[1]
|
88 |
+
|
89 |
+
outputs = self.model.generate(
|
90 |
+
**model_inputs,
|
91 |
+
do_sample=do_sample,
|
92 |
+
temperature=temperature,
|
93 |
+
max_new_tokens=max_new_tokens,
|
94 |
+
repetition_penalty=repetition_penalty,
|
95 |
+
eos_token_id=terminators
|
96 |
+
)
|
97 |
+
return outputs[0][input_len:]
|
98 |
+
|
99 |
+
def postprocess(self, model_outputs) -> str:
|
100 |
+
output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
|
101 |
+
return output_text
|
102 |
+
|
103 |
+
|
104 |
+
transformers.pipeline
|
105 |
+
transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
|
106 |
+
"ultravox-pipeline", # TODO: make it broader later on
|
107 |
+
pipeline_class=UltravoxPipeline,
|
108 |
+
pt_model=ultravox_model.UltravoxModel,
|
109 |
+
default={"pt": ("fixie-ai/ultravox-v0.2", "main")},
|
110 |
+
type="multimodal",
|
111 |
+
)
|