Upload whisper_model_modified.py with huggingface_hub
Browse files- whisper_model_modified.py +141 -0
whisper_model_modified.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
| 2 |
+
# see this issue for the commentary: https://github.com/huggingface/transformers/issues/25744
|
| 3 |
+
#
|
| 4 |
+
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
import torch
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
import transformers
|
| 20 |
+
import transformers.modeling_outputs
|
| 21 |
+
from transformers.models.whisper import modeling_whisper as whisper
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class WhisperEncoder(whisper.WhisperEncoder):
|
| 25 |
+
"""
|
| 26 |
+
Encoder portion of OpenAI's Whisper model.
|
| 27 |
+
|
| 28 |
+
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
| 29 |
+
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
| 30 |
+
2. allow less than 30 second of audio padding to be passed in:
|
| 31 |
+
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
| 32 |
+
- embed_pos is now sliced to match the length of `inputs_embeds`
|
| 33 |
+
|
| 34 |
+
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
base_model_prefix = "model.encoder"
|
| 38 |
+
|
| 39 |
+
def forward(
|
| 40 |
+
self,
|
| 41 |
+
input_features,
|
| 42 |
+
attention_mask=None,
|
| 43 |
+
head_mask=None,
|
| 44 |
+
output_attentions=None,
|
| 45 |
+
output_hidden_states=None,
|
| 46 |
+
return_dict=None,
|
| 47 |
+
):
|
| 48 |
+
expected_seq_length = (
|
| 49 |
+
self.config.max_source_positions
|
| 50 |
+
* self.conv1.stride[0]
|
| 51 |
+
* self.conv2.stride[0]
|
| 52 |
+
)
|
| 53 |
+
if input_features.shape[-1] > expected_seq_length:
|
| 54 |
+
raise ValueError(
|
| 55 |
+
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
output_attentions = (
|
| 59 |
+
output_attentions
|
| 60 |
+
if output_attentions is not None
|
| 61 |
+
else self.config.output_attentions
|
| 62 |
+
)
|
| 63 |
+
output_hidden_states = (
|
| 64 |
+
output_hidden_states
|
| 65 |
+
if output_hidden_states is not None
|
| 66 |
+
else self.config.output_hidden_states
|
| 67 |
+
)
|
| 68 |
+
return_dict = (
|
| 69 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 70 |
+
)
|
| 71 |
+
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
| 72 |
+
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
| 73 |
+
|
| 74 |
+
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
| 75 |
+
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
| 76 |
+
|
| 77 |
+
hidden_states = inputs_embeds + embed_pos
|
| 78 |
+
hidden_states = nn.functional.dropout(
|
| 79 |
+
hidden_states, p=self.dropout, training=self.training
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
encoder_states = () if output_hidden_states else None
|
| 83 |
+
all_attentions = () if output_attentions else None
|
| 84 |
+
|
| 85 |
+
# check if head_mask has a correct number of layers specified if desired
|
| 86 |
+
if head_mask is not None:
|
| 87 |
+
assert head_mask.size()[0] == (
|
| 88 |
+
len(self.layers)
|
| 89 |
+
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
| 90 |
+
|
| 91 |
+
for idx, encoder_layer in enumerate(self.layers):
|
| 92 |
+
if output_hidden_states:
|
| 93 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 94 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
| 95 |
+
to_drop = False
|
| 96 |
+
if self.training:
|
| 97 |
+
dropout_probability = torch.rand([])
|
| 98 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
| 99 |
+
to_drop = True
|
| 100 |
+
|
| 101 |
+
if to_drop:
|
| 102 |
+
layer_outputs = (None, None)
|
| 103 |
+
else:
|
| 104 |
+
if self.gradient_checkpointing and self.training:
|
| 105 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 106 |
+
encoder_layer.__call__,
|
| 107 |
+
hidden_states,
|
| 108 |
+
None,
|
| 109 |
+
(head_mask[idx] if head_mask is not None else None),
|
| 110 |
+
output_attentions,
|
| 111 |
+
)
|
| 112 |
+
else:
|
| 113 |
+
layer_outputs = encoder_layer(
|
| 114 |
+
hidden_states,
|
| 115 |
+
None,
|
| 116 |
+
layer_head_mask=(
|
| 117 |
+
head_mask[idx] if head_mask is not None else None
|
| 118 |
+
),
|
| 119 |
+
output_attentions=output_attentions,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
hidden_states = layer_outputs[0]
|
| 123 |
+
|
| 124 |
+
if output_attentions:
|
| 125 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 126 |
+
|
| 127 |
+
hidden_states = self.layer_norm(hidden_states)
|
| 128 |
+
if output_hidden_states:
|
| 129 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 130 |
+
|
| 131 |
+
if not return_dict:
|
| 132 |
+
return tuple(
|
| 133 |
+
v
|
| 134 |
+
for v in [hidden_states, encoder_states, all_attentions]
|
| 135 |
+
if v is not None
|
| 136 |
+
)
|
| 137 |
+
return transformers.modeling_outputs.BaseModelOutput(
|
| 138 |
+
last_hidden_state=hidden_states,
|
| 139 |
+
hidden_states=encoder_states,
|
| 140 |
+
attentions=all_attentions,
|
| 141 |
+
)
|