File size: 1,399 Bytes
f9cdb14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
license: apache-2.0
language:
- en
base_model:
- FacebookAI/roberta-base
pipeline_tag: text-classification
library_name: transformers
---
# RoBERTa-base AI Text Detector
Finetuned RoBERTa-base model for detecting AI generated English texts.
See [FakespotAILabs/ApolloDFT](https://github.com/FakespotAILabs/ApolloDFT) for more details and a technical report of the model and experiments we conducted.
## How to use
You can use this model directly with a pipeline.
For better performance, you should apply the `clean_text` function in [utils.py](utils.py).
```python
from transformers import pipeline
from utils import clean_text
classifier = pipeline(
"text-classification",
model="fakespot-ai/roberta-base-ai-text-detection-v1"
)
# single text
text = "text 1"
classifier(clean_text(text))
[
{
'label': str,
'score': float
}
]
# list of texts
texts = ["text 1", "text 2"]
classifier([clean_text(t) for t in texts])
[
{
'label': str,
'score': float
},
{
'label': str,
'score': float
}
]
```
## Disclaimer
- The model's score represents an estimation of the likelihood of the input text being AI-generated or human-written, rather than indicating the proportion of the text that is AI-generated or human-written.
- The accuracy and performance of the model generally improve with longer text inputs.
|